• Title/Summary/Keyword: bacterial indicator

Search Result 100, Processing Time 0.026 seconds

Bacterial Removal Efficiencies by Unit Processes in a Sewage Treatment Plant using Activated Sludge Process (활성슬러지공정 하수종말처리장의 단위공정별 세균 제거효율)

  • Lee, Dong-Geun;Jung, Mira;Sung, Gi Moon;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.871-879
    • /
    • 2010
  • To figure out the removal efficiency of indicator and pathogenic bacteria by unit processes of a sewage treatment plant using activated sludge process, analyses were done for incoming sewage, influent and effluent of primary clarifier, aeration tank, secondary clarifier and final discharge conduit of the plant. A matrix of bacterial items (average of bacterial reduction [log/ml], p value of paired t-test, number of decreased cases of twenty analyses, removal percentage only for decreased cases) between incoming sewage and final effluent of the plant were heterotrophic plate counts (1.54, 0.000, 20, 95.01), total coliforms (1.38, 0.000, 19, 83.94), fecal coliforms (0.90, 0.000, 20, 94.84), fecal streptococci (0.90, 0.000, 20, 98.08), presumptive Salmonella (0.23, 0.561, 7, 99.09), and presumptive Shigella (1.02, 0.002, 15, 92.98). Total coliforms, fecal coliforms, heterotrophic plate counts, and fecal streptococci showed highest decrease through secondary clarifier about 1-log (p<0.001) between 88% and 96%, and primary clarifier represented the significant (p<0.05) decrease. However, final effluent through discharge conduit showed higher total coliforms and fecal streptococci than effluent of secondary clarifier (p<0.05). In addition, final effluent once violated the water quality standard while effluent of secondary clarifier satisfied the standard. Hence some control measures including elimination of deposits in discharge conduit or disinfection of final effluent are necessary.

Relationship between Thermal Properties of Muscle Proteins and Pork Quality

  • Kuo, Hsiu-Lan;Chen, Ming-Tsao;Liu, Deng-Cheng;Lin, Lieh-Chin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.427-432
    • /
    • 2005
  • The purpose of this study was performed as model study using four animals to investigate the correction between the changes in Differential Scanning Calorimetry thermogram of muscle proteins during storage and meat freshness. M. longissimus dorsi of pork was obtained immediately after slaughter and chilled/stored at either $-2^{\circ}C$ or $25^{\circ}C$ for up to 96 h for analyses. DSC thermograms were determined and compared with pH values, ATP-related compounds, K-values, volatile basic nitrogen (VBN) levels, bacterial counts and electrophoretic behavior. Changes in pH, bacterial counts, VBN and K-values were associated with increased storage temperature and time. The levels of pH values, bacterial counts, VBN and K-values of pork samples stored at $25^{\circ}C$ were higher than those of the pork samples stored at $-2^{\circ}C$. ATP concentration decreased faster in samples stored at $25^{\circ}C$. Only IMP increased in samples stored at $-2^{\circ}C$, whereas the concentration of hypoxanthine and inosine increased in samples stored at $25^{\circ}C$. One exothermic peak and two endothermic peaks appeared on the thermograms of pork stored at either temperature. Lower transition temperature of myosin, sarcoplasmic protein and actin peaks were observed. The freshness parameters of K-value, VBN and hypoxanthine showed highly negative correlations (-0.742- -0.9980) to the changes in transition temperature. Therefore, the shift temperature on DSC thermogram can be used as an indicator of the freshness parameters of meat.

Effect of Bacterial and Algal Symbiotic Reaction on the Removal of Organic Carbon in River Ecosystem (하천 생태계에서 유기탄소 기질 제거에 조류와 세균의 공생작용이 미치는 영향)

  • 공석기;도시유끼나까지마
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.22-27
    • /
    • 2001
  • It have been investigated how algal and bacterial symbiotic reaction influences on removal of organic carbon in river ecosystem. And artificial experimentation apparatus was made for algae'and bacteia'culture as lab scale. Investigating and researching minutely the change of concentration of organic carbon substrate and the change of population density of algae'and of bacteria'with this artificial experimentation apparatus, the next results could be obtained. 1. Successful decrease of DOC(dissolved organic carbon) could not be expected unless algal and bacterial biomass floe was nut formed effectively and unless biosorption was not proceeded effectively in the very culture system in which artificial synthetic wastewater was supplied continuously at constant rate. 2. In conditions of culture liquid of 1335 glucnse mg/L(type 1) and of 267 glucose mg:L(type 2), the algal dominant species was always Chlorella vulgaris in both types in which artificial synthetic wastewater were supplied continuously at constant rate and algae population density was around maximum 107 cells/mL. 3. It was around 108 ~ 107 cells/mL that the population density of heterotrophic bacterium. In culture medium systems type 1 and type 2 in which artificial wastewater were supplied continuously at constant rate, the same density appeared initially when using the population density of Escherichia coli w 3110 as indirect indicator. And this density decreased rapidly till the culturing date 35 days were passed away, while this density increased with gentle slope after same date and then the trend of change at type 2 was more severe than one at type 1. 4. When seeing such a change of population density of Escherichia coli w 3110, the growth of heterotrophic bacterium appeared as survival instinct pattern of broader requirement of nutrient at condition of low concentration of organic carbon substrate than condition of high concentration of same substrate.

  • PDF

Distribution of Phytoplankton and Bacteria in the Environmental Transitional Zone of Tropical Mangrove Area (열대 홍수림 주변 해역 환경 전이대의 식물플랑크톤 및 박테리아의 분포)

  • Choi, Dong Han;Noh, Jae Hoon;Ahn, Sung Min;Lee, Charity M.;Kim, Dongseon;Kim, Kyung-Tae;Kwon, Moon-Sang;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.415-425
    • /
    • 2013
  • In order to understand phytoplankton and bacterial distribution in tropical coral reef ecosystems in relation to the mangrove community, their biomass and activities were measured in the sea waters of the Chuuk and the Kosrae lagoons located in Micronesia. Chlorophyll a and bacterial abundance showed maximal values in the seawater near the mangrove forests, and then steeply decreased as the distance increased from the mangrove forests, indicating that environmental conditions for these microorganisms changed greatly in lagoon waters. Together with chlorophyll a, abundance of Synechococcus and phototrophic picoeukaryotes and a variety of indicator pigments for dinoflagellates, diatoms, green algae and cryptophytes also showed similar spatial distribution patterns, suggesting that phytoplankton assemblages respond to the environmental gradient by changing community compositions. In addition, primary production and bacterial production were also highest in the bay surrounded by mangrove forest and lowest outside of the lagoon. These results suggest that mangrove waters play an important role in energy production and nutrient cycling in tropical coasts, undoubtedly receiving large inputs of organic matter from shore vegetation such as mangroves. However, the steep decrease of biomass and production of phytoplankton and heterotrophic bacteria within a short distance from the bay to the level of oligotrophic waters indicates that the effect of mangrove waters does not extend far away.

Comparison of microbial communities in swine manure at various temperatures and storage times

  • Lim, Joung-Soo;Yang, Seung Hak;Kim, Bong-Soo;Lee, Eun Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1373-1380
    • /
    • 2018
  • Objective: This study was designed to investigate the effects of temperature and storage time on the evolution of bacterial communities in swine manure. Methods: Manure was stored at $-20^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $37^{\circ}C$ and sampled at 7-day intervals over 28 days of storage, for a total of 5 time points. To assess the bacterial species present, 16S ribosomal RNA gene sequences were analyzed using pyrosequencing. Results: After normalization, 113,934 sequence reads were obtained, with an average length of $466.6{\pm}4.4bp$. The diversity indices of the communities reduced as temperature and storage time increased, and the slopes of rarefaction curves decreased from the second week in samples stored at $-20^{\circ}C$ and $4^{\circ}C$. These results indicate that the richness of the bacterial community in the manure reduced as temperature and storage time increased. Firmicutes were the dominant phylum in all samples examined, ranging from 89.3% to 98.8% of total reads, followed by Actinobacteria, which accounted for 0.6% to 7.9%. A change in community composition was observed in samples stored at $37^{\circ}C$ during the first 7 days, indicating that temperature plays an important role in determining the microbiota of swine manure. Clostridium, Turicibacter, Streptococcus, and Lactobacillus within Firmicutes, and Corynebacterium within Actinobacteria were the most dominant genera in fresh manure and all stored samples. Conclusion: Based on our findings, we propose Clostridium as an indicator genus of swine manure decomposition in an anaerobic environment. The proportions of dominant genera changed in samples stored at $20^{\circ}C$ and $37^{\circ}C$ during the fourth week. Based on these results, it was concluded that the microbial communities of swine manure change rapidly as storage time and temperature increase.

On-line Monitoring of IPTG Induction for Recombinant Protein Production Using an Automatic pH Control Signal

  • Hur Won;Chung Yoon-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.304-308
    • /
    • 2005
  • The response of IPTG induction was investigated through the monitoring of the alkali consumption rate and buffer capacity during the cultivation of recombinant E. coli BL21 (DE3) harboring the plasmid pRSET-LacZ under the control of lac promoter. The rate of alkali consumption increased along with cell growth, but declined suddenly after approximately 0.2 h of IPTG induction. The buffer capacity also declined after 0.9 h of IPTG induction. The profile of buffer capacity seems to correlate with the level of acetate production. The IPTG response was monitored only when introduced into the mid-exponential phase of bacterial cell growth. The minimum concentration of IPTG for induction, which was found out to be 0.1 mM, can also be monitored on-line and in-situ. Therefore, the on-line monitoring of alkali consumption rate and buffer capacity can be an indicator of the metabolic shift initiated by IPTG supplement, as well as for the physiological state of cell growth.

Development of Apoptosis Model and Bioimmune Responses in Experimental Animal I. Induction and Indicator of Apoptosis and Hepatic Tumorigenesis (실험동물에서 Apoptosis의 모델개발과 생체면역반응 및 형태학적 특징 I. Apoptosis 및 Hepatic Tumorigenesis의 유도 및 관련지표의 검색)

  • 강정부;하우송;김지경
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.100-107
    • /
    • 1999
  • Apoptosis is now widely recognized as a common form of cell death and represents mechanism of cell clearance in many physiological situations where deletion of cells is required. In vivo administration of bacterial lipopolysaccharide (LPS) to Balb/c mice induced DNA fragmentation in the thymus. DNA fragmentation in the thymus was roughly dependent on the dose of LPS injected and reached the peak 18 hours after injection. This apoptosis in the thymus might be mediated due to LPS stimulant. DEN (diethylnitrosamine) has been shown to cause liver cancer in experimental animals and humans. The hepatic tumorigenesis was induced by ad libitum feeding of DEN only. It was suggested that DEN induced hepatic tumorgenesis in rat is a good reproducible model for studying biochemical and pathophysiological changes associated with the development of hepatic tumorigenesis and apoptosis.

  • PDF

Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens - A Review

  • Choi, Ki Young;Lee, Tae Kwon;Sul, Woo Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1217-1225
    • /
    • 2015
  • Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT), the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

Efficiency Comparison between Chlorine and Chlorine Dioxide to Control Bacterial Regrowth in Water Distribution System

  • Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.282-291
    • /
    • 2006
  • This study investigated the inactivation of the total coliform, an indicator organism in chlorine and chlorine in order to control microbial regrowth for water distribution systems and select an appropriate disinfection strategy for drinking water systems. The disinfection effects of chlorine and chlorine dioxide with regard to the dosage of disinfectant, contact time and DOC was investigated experimentally. In spite of the consistency of chlorine residuals at approximately 0.2 mg/l, bacteria regrowth was detected in the distribution system and it was confirmed by the scanning electron microscope results. The influence of organic carbon change on the killing effect of chlorine dioxide was strong.

Production of Free D-amino Acids in Raw Milk Related to Psychrotrophic Bacterial Contamination (원유내 내냉성 미생물의 오염에 따른 유리 D-amino acid의 생성)

  • Kim, C.H.;Song, Y.M.;Baick, S.C.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.91-96
    • /
    • 2004
  • It is generally believed that amino acids occurring naturally in mammals are of the L-configuration. D-amino acid(DM) are common in nature as constituents of bacterial cell walls and several antibiotics. Recent reports have demonstrated the presence of small amounts of free DM in milk. The presence of free DM may affect the food quality by decreasing the nutritional value. Our objective was to examine whether the free DM carne from psychrotrophic bacteria. Free DM was produced by treating raw milk with Pseudomonas spp. The samples were extracted with sulphosalicylic acid and derivatized with AccQ-$Tag^{TM}$ reagent when the analysis was carried out by reverse-phase HPLC. We tested correlations of the content of free DM with bacterial growth. Significant amounts of free D-a1anine and D-proline have been found in the raw milk inoculated with Pseudomonas spp. The increase of D-alanine and D-proline appeared to be mainly related to the presence of Pseudomonas fluorescens. These results suggest that free DM may be considered as an indicator of psychrotrophic bacterial milk contamination.