• Title/Summary/Keyword: bacterial inactivation

Search Result 66, Processing Time 0.024 seconds

Utilization of Piper betle L. Extract for Inactivating Foodborne Bacterial Biofilms on Pitted and Smooth Stainless Steel Surfaces

  • Songsirin Ruengvisesh;Pattarapong Wenbap;Peetitas Damrongsaktrakul;Suchanya Santiakachai;Warisara Kasemsukwimol;Sirilak Chitvittaya;Yossakorn Painsawat;Isaratat Phung-on;Pravate Tuitemwong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.771-779
    • /
    • 2023
  • Biofilms are a significant concern in the food industry. The utilization of plant-derived compounds to inactivate biofilms on food contact surfaces has not been widely reported. Also, the increasing negative perception of consumers against synthetic sanitizers has encouraged the hunt for natural compounds as alternatives. Therefore, in this study we evaluated the antimicrobial activities of ethanol extracts, acetone extracts, and essential oils (EOs) of seven culinary herbs against Salmonella enterica serotype Typhimurium and Listeria innocua using the broth microdilution assay. Among all tested extracts and EOs, the ethanol extract of Piper betle L. exhibited the most efficient antimicrobial activities. To evaluate the biofilm inactivation effect, S. Typhimurium and L. innocua biofilms on pitted and smooth stainless steel (SS) coupons were exposed to P. betle ethanol extract (12.5 mg/ml), sodium hypochlorite (NaClO; 200 ppm), hydrogen peroxide (HP; 1100 ppm), and benzalkonium chloride (BKC; 400 ppm) for 15 min. Results showed that, for the untreated controls, higher sessile cell counts were observed on pitted SS versus smooth SS coupons. Overall, biofilm inactivation efficacies of the tested sanitizers followed the trend of P. betle extract ≥ BKC > NaClO > HP. The surface condition of SS did not affect the biofilm inactivation effect of each tested sanitizer. The contact angle results revealed P. betle ethanol extract could increase the surface wettability of SS coupons. This research suggests P. betle extract might be utilized as an alternative sanitizer in food processing facilities.

Generation of Minicells from an Endotoxin-Free Gram-Positive Strain Corynebacterium glutamicum

  • Lee, Jin-Young;Choy, Hyon E.;Lee, Jin-Ho;Kim, Geun-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.554-558
    • /
    • 2015
  • Drug delivery systems (DDSs) incorporating bacterial minicells have been evaluated as a very powerful tool in view of biocompatibility. However, limited studies have been carried out on these systems, mainly using minicells from Salmonella sp. and Escherichia coli. Thus, we generated a new minicell-producing strain from an endotoxin-free Corynebacterium glutamicum by the inactivation of genes related to cell division. The two knockout strains, ${\Delta}parA$ and ${\Delta}ncgl1366$, showed distinct abilities to produce minicells. The resulting minicells were purified via sequential antibiotic treatments and centrifugations, which resulted in reproducible yields.

Antibacterial Activity of Ethanol Extract and Fraction of Sasa borealis (조릿대 Ethanol 추출물 및 분획물의 항균 효과)

  • Jang, Mi-Ran;Lee, Da-Uhm;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.848-852
    • /
    • 2010
  • This study investigated the antibacterial activities of extracts and fractions of Sasa borealis against eight bacteria (Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Psedomonas aerginosa, Salmonella choleraesuis, Serratia marcescens and Vibrio vulnificus) by broth dilution assay. Using survival curves, the kinetics of bacterial inactivation upon exposure to the extracts and fractions were followed for 24 h. In this same manner, MIC (minimum inhibitory concentration) values were determined by broth microdilution assay and then confirmed to be the extract concentrations that inhibited bacterial growth. Sasa borealis extracts showed antibacterial activities against all tested bacteria. In particular, all tested fractions of Sasa borealis had stronger activities than 70% ethanol extract. MIC of Sasa borealis extract was determined to be 5 mg/mL against Salmonella choleraesuis. All fractions of Sasa borealis extract had extremely strong antibacterial activities. MIC of fractions were determined to be 0.03~2.5 mg/mL. These results suggest that the extracts and fractions of Sasa borealis effectively inhibited bacterial growth and thus are useful as natural antibacterial agents.

Inactivation of Vibrio parahaemolyticus by Aqueous Ozone

  • Feng, Lifang;Zhang, Kuo;Gao, Mengsha;Shi, Chunwei;Ge, Caiyun;Qu, Daofeng;Zhu, Junli;Shi, Yugang;Han, Jianzhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1233-1246
    • /
    • 2018
  • Vibrio parahaemolyticus contamination causes serious foodborne illness and has become a global health problem. As a disinfectant, aqueous ozone can effectively kill a number of bacteria, viruses, parasites, and other microorganisms. In this study, three factors, namely, the aqueous ozone concentration, the exposure time, and the bacterial density, were analyzed by response surface methodology, and the aqueous ozone concentration was the most influential factor in the sterilization ratio. Under low aqueous ozone concentrations (less than 0.125 mg/l), the bacterial cell membranes remained intact, and the ozone was detoxified by intracellular antioxidant enzymes (e.g., superoxide dismutase and catalase). Under high aqueous ozone concentrations (more than 1 mg/l), cell membranes were damaged by the degree of peripheral electronegativity at the cell surface and the concentration of lactate dehydrogenase released into the extracellular space, and the ultrastructures of the cells were confirmed by transmission electron microscopy. Aqueous ozone penetrated the cells through leaking membranes, inactivated the enzymes, inhibited almost all the genes, and degraded the genetic materials of gDNA and total RNA, which eventually led to cell death.

Effect of LED light on the inactivation of Bacillus cereus for extending shelf-life of extruded rice cake and simulation of the patterns of LED irradiation by various arrays of LEDs (압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션)

  • Jung, Hwabin;Yuk, Hyun-Gyun;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The optimum design of LED device for irradiation of 460 nm blue light on extruded rice cake using simulation and the effect of the blue light on the inactivation of Bacillus cereus (B. cereus) group on the rice cake were investigated. The irradiated light intensity patterns on the surface area of the sample were simulated with three different LED arrays (centered, cross, and evenly spaced) and at various distances (22, 32, 42 mm) between the LED modules and the sample. In addition, the uniformity was calculated as Petri factor. The evenly spaced array resulted the most uniform light intensity pattern in the simulation, and the Petri factor of 32 and 42 mm of the distances showed higher than 0.9, which represents the ideal uniformity of LED device. The bacterial population of the rice cake decreased to less than the initial bacterial population during exposure to LED blue light, whereas the bacterial population of the control sample increased. The bacterial count of the rice cake after blue light irradiation for 24 h was 1.21 log CFU/g lower than the control sample. Petri factor increased with increase of the distance between the light source and sample, however, the reduction rate of B. cereus group decreased. Therefore, the design of LED device, that represented the Petri factor higher than 0.9 and inactivated the population of B. cereus group, with evenly spaced and 32 mm of distance between the light source and sample was suitable for extending shelf-life of rice cake.

Studies on Inactivated Combined Vaccine of Bovine Anthrax and Blackleg (소의 탄저기종저 불활화 혼합백신에 관한 연구)

  • Jeon, Yun Seong
    • Korean Journal of Veterinary Research
    • /
    • v.10 no.1
    • /
    • pp.5-10
    • /
    • 1970
  • Due to the fact that an inactivated anthrax vaccine may lark its immunogenicity and stability of immunogen a number of spore vaccines were exclusively used worldwide. In these studies a number of important factors were emphasized to achieve the following: selection of non or less allergic strain of anthrax bacillus, capsulation of bacteria. obtaining of non sporulating but vegetative organisms, adequate inactivation of B. anthraccis by means of formalin, adsorption of immunogen to aluminum hydroxide gel. Non or less allergic strains of anthrax bacillus which is inactivated with formalin was selected by a hyperimmunization and shock test in rabbits. Obtaining capsular material and vegetative immunogen, a virulent anthrax organisms were cultivated on sodium bicarbonate medium with of without adding of l-alanine in which B, anthracis grew luxuriantly without forming spores. Inactivation was carried out at $37^{\circ}C$ water bath for 3 days after the bacterial culture was mixed with formalin, in a final concentration of two per cent of formalin. Aluminum hydroxide gel was added to the mixture of anthrax and blackleg bacterin. Vaccines were injected guinea pig via subcutaneous or intramusoular route and challenged after three weeks and the possibilities of protection was tested. Throughout the studies. the above mentioned vaccines possibly protected the vaccinated guinea pigs more than 80 per cent compared to that of the controls. This experimental results strongly suggest that the vaccine may possibly applicable to bovine.

  • PDF

Photodynamic Inactivation of Moraxella catarrhalis (Moraxella catarrhalis의 광역학적 비활성화)

  • Hong, Seong-No;Kwon, Pil-Seung;Kim, Dae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The aim of this study was to evaluate the bacterial effects of Moraxella catarrhalis in otitis media with effusion (OME) by photodynamic therapy (PDT). Bacterial suspensions (10000 CFU/mL) were prepared. The colony forming units (CFU) of Moraxella catarrhalis have been measured after an application of photogem plus 632 nm diode laser irradiation. One ml of the bacterial suspensions have been incubated in the dark for 3h with various concentrations of photogem ($0.625{\sim}5.0_{\mu}g/mL$) and then irradiated with 632 nm diode laser ($15J/cm^2$). After, the PDT Moraxella catarrhalis suspensions ($50{\mu}L$) were inoculated on chocolate agar plate and cultured in the dark at $37^{\circ}C$, 5% $CO_2$ condition for 18h. The colony forming units off the bacteria were measured. Also transmission electron microscopy (TEM) was employed to evaluate the effect of otitis media pathogens by PDT. The nucleus of Moraxella catarrhalis was stained using green fluorescent nucleic acid dye thiazole orange and the fluorescence intensity of the nucleus was measured by flow cytometry. The PDT was effective in killing Moraxella catarrhalis at the photogem dose of $5.0_{\mu}g/mL$, respectively, As assessed by flow cytometry analysis the fluorescence intensity of the nucleus got lower after PDT. TEM result appeared to able to cause damage to the bacterial membranes. On the basis of these findings, bacterial photodynamic therapy with photogem can be considered to be a promising new therapeutic approach for OME.

  • PDF

Reflection on Kinetic Models to the Chlorine Disinfection for Drinking Water Production

  • Lee, Yoon-Jin;Nam, Sang-ho
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.119-124
    • /
    • 2002
  • Experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform used as a general indicator organism based on the chlorine residuals as a disinfectant. The water samples were taken from the outlet of a settling basin in a conventional surface water treat- ment system that is provided with the raw water drawn from the mid-stream of the Han River, The inactivation of total coliform was experimentally analysed for the dose of disinfectants contact time, filtration and mixing intensity. The curves obtained from a series of batch processes were shaped with a general tailing-off and biphasic mode of inactivation, i.e. a sharp loss of bacterial viability within 15 min followed by an extended phase. In order to observe the effect of carry-over suspended solids on chlorine consumption and disinfection efficiency, the water samples were filtered, prior to inoculation with coliforms, with membranes of both 2.5$\mu$m and 11.0 $\mu$m pore size, and with a sand tilter of 1.0 mm in effective size and of 1.4 in uniformity coefficient. As far as the disinfection efficiency is concerned, there were no significant differences. The parameters estimated by the models of Chick-Wat-son, Hom and Selleck from our experimental data obtained within 120 min are: log(N/N$\_$0/)=-0.16CT with n=1, leg(N/N$\_$0/)=-0.71C$\^$0.87/ with n 1 for the Chick-Watson model, log (N/N$\_$0/)=-1.87C$\^$0.47/ T$\^$0.36/ for the Hom model, log (MHo)=-2.13log (1+CT/0.11) for the Selleck model. It is notable that among the models reviewed with regard to the experimental data obtained, the Selleck model appeared to most closely resemble the total coliform survival curve.

Disinfection of Wastewater by UV Irradiation: Influence of Hydrodynamics on the Performance of the Disinfection

  • Brahmi, Mounaouer;Hassen, Abdennaceur
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.243-252
    • /
    • 2011
  • Several mathematical relationships have been developed to describe bacterial responses to UV irradiation. Pseudomonas aeruginosa was taken as a bacterial model. The results obtained showed that the kinetics of disinfection is far to be as uniform. In fact, application of the model of Chick-Watson in its original form or modification, taking into account the speed change during the disinfection process, has not significantly improved results. The application of both models of Collins-Selleck and Hom constitute a major opportunity to simulate goodly the kinetics of UV disinfection. The results obtained showed that despite the major advantage held by applying the Hom model in this process of disinfection and for all strains studied, the model of Collins-Selleck gave the best results for the description of the UV inactivation process. The design of reactors, operating in continuous disinfection system, requires taking into account the hydrodynamic behaviour of water in the reactor. Knowing that a reduction of 4-log is necessary in the case of wastewater reuse for irrigation, a model integrating the expression of disinfection kinetics and the hydrodynamics through the UV irradiation room was proposed. The results highlight the interest to develop reactors in series working as four perfectly mixed reactors.

Inactivation of Microorganisms and Enzymes in Foxtail Millet Takju by High Hydrostatic Pressure Treatment (초고압 처리에 의한 좁쌀탁주의 미생물 살균 및 효소 불활성화)

  • Jwa, Mi-Kyung;Lim, Sang-Bin;Mok, Chul-Kyoon;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-230
    • /
    • 2001
  • High hydrostatic pressure was applied to Foxtail Millet Takju to investigate the effects of high pressure on inactivation of microorganisms and enzymes. Total bacteria, lactic acid bacteria and yeast in untreated Takju were $6.8{\times}10^7,\;1.3{\times}10^8\;and\;8.4{\times}10^7\;CFU/mL$, respectively. Total bacterial count in Takju reduced to $2.2{\times}10^5\;CFU/mL$, while lactic acid bacteria and yeast were sterilized completely when heated at $65^{\circ}C$ for 30 min. Lactic acid bacteria and yeast decreased with the increase of treatment pressure, and pressurization of 400 MPa for 10 min at room temperature sterilized completely the lactic acid bacteria and yeast in Takju. Total bacteria were not sterilized with pressurization of even 600 MPa at room temperature. Total bacteria were completely sterilized at $66^{\circ}C/400\;MPa/60\;min\;and\;66^{\circ}C/600\;MPa/10\;min$. Pressurization of Takju caused a partial inactivation of ${\alpha}-amylase$, and after pressurization at 600 MPa for 10 min at room temperature, 73.2% of the original activity remained. The activity of glucoamylase increased with the increase of treatment pressure. Treatment at $66^{\circ}C/400\;MPa/10\;min$ reduced the activity of ${\alpha}-amylase$ by 59.7% and glucoamylase by 20.5%. ${\alpha}-Amylase$ was inactivated to less than 1.2% of the original activity at $66^{\circ}C/600\;MPa/30\;min$.

  • PDF