• Title/Summary/Keyword: bacterial effect

Search Result 1,957, Processing Time 0.024 seconds

The Experimental Study on the Effect of Fel Ursi & Bovis Calculus Pharmacopuncture Solution in Bacterial Species which cause Keratitis (웅담·우황약침액이 다종의 각막염 유발균에 미치는 영향)

  • Han, Na-Young;Seo, Hyung-Sik
    • Journal of Pharmacopuncture
    • /
    • v.13 no.2
    • /
    • pp.101-110
    • /
    • 2010
  • Objectives : This experimental study was performed to investigate the effect of Fel Ursi & Bovis Calculus pharmacopuncture solution(FUBCPS) manufactured by using alcohol/water extraction method for identify ing the use of it as eyedrops. Methods: FUBCPS was manufactured by using alcohol/water extraction method. Measure the size of inhibition zone and MIC(Minimum Inhibition Concentration) after administering FUBCPS on bacterial species. Staphylococcus aureus. Staphylococcus epidermidis, Pseudomonas aeruginosa, Aspergillus niger, Fusarium oxysporum and Candida albicans, which cause keratitis. Administering cravit(Levonoxacin medicine) on bacterial species also performed to compare the anti-bacterial potency of this material, measured by using the size of inhibition zone Results : After administering FUBCPS on bacterial species(Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Aspergillus niger, Fusarium oxysporum, Candida albicans). there was no response to MIC and there was no anti -bacterial potency also. Conclusions : This study suggests that FUBCPS dose not have anti-bacterial effects on bacterial species which cause Keratitis. These study result recommends that we need to research more on herbal medicines of eye drop which have anti-bacterial effects on keratitis

Effect of Filler Addition on Properties of Sheets Prepared from Bacterial Cellulose (박테리아 셀룰로오스 시트의 물성에 미치는 충전제의 첨가효과)

  • 조남석;민두식
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.35-41
    • /
    • 1998
  • The bacterial cellulose has many unique properties that are potentially and commercially beneficial. In order to make opaque product from this cellulose, filling properties by fillers should be known. This study was performed to investigate the effect of filler addition on physical properties of sheets from bacterial cellulose. The effect of filling on its optical properties was also discussed. The apparent density and internal bonding strength of bacterial cellulose sheet are decreasing with the increase of filler contents. Those adversely affect Young's modulus and physical property of the sheet, but these negative phenomena of the bacterial cellulose sheet by filler addition are not so sensitive compared to substantial decreasing of physical properties of ordinary hardwood KP. This strength decrease would be attributed to the decrease of relative bonding sites among pulp fibers. Concerned to optical properties, the bacterial cellulose sheet shows high increase of brightness and opacity according to filler loading, but no significant changes in porosity up to 17.3% loading because of fine and filamentous structure of bacterial cellulose fibers.

  • PDF

Effect of Salinity on the Bacterial Community in the Sewage Treatment System (하수 처리 과정에서 염분이 세균 군집에 미치는 영향)

  • 서미애;홍선희;김동주;박경미;안태석
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.124-129
    • /
    • 2001
  • For elucidating the effect of salinity to the effect of wastewater treatment, the heterotrophic bacterial numbers, total bacterial numbers, and the bacterial community structure by FISH method were analyzed. The total bacterial numbers were not significantly changed by the salinity. But the heterotrophic bacterial numbers and bacterial community structures were drastically changed by the increase of salinity. In case of 1% salinity, the heterotrophic bacterial numbers and structure were slightly changed comparing to those of contol. In case of 2% and higher salinities, the numbers of heterotrophic bacteria and the proportions of Eubacteria, Proteobacteria $\alpha$-group, $\rho$-group and Cytophaga-Flavobacterium groups were deceasing. By these results, the salinity stress to bacterial community in waste water treatment was unveiled, and for sustaining the waste water treatment system, the salinity should be lower than 1%.

  • PDF

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF

The Anti-Bacterial Effect of Witch Hazel(Hamamelis virginiana) on Oral Pathogens (Witch hazel(Hamamelis virginiana)의 구강병원균에 대한 항균 효과)

  • Ryu, Seong-Yong;Ahn, Hyung-Joon;Kwon, Jeong-Seung;Park, Ju-Hyun;Kim, Jae-Young;Choi, Jong-Hoon
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • An ideal anti-bacterial medication for oral infection requires selective effect on pathogens causing dental caries and periodontal disease but not on normal flora. In addition, it should be less toxic for human and even for environment. This study was to seek such a natural anti-bacterial medication and thus anti-bacterial effect of Hamamelis virginiana was evaluated. Many recent researches on the anti-bacterial effect of natural plant extract and essential oil have reported that natural products can be used as medication for prevention and restrainment of dental caries, halitosis and periodontitis. It has been also reported that Hamamelis virginiana has anti-bacterial effect on Porphyromonas gingivalis, Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peprostreptococcus micros, and Actinomyces odontolyticus. This study evaluated anti-bacterial effect of Hamamelis virginiana on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae to expand its anti-bacterial effect on other important oral pathogens and eventually to develop its oral care products or apply to clinical purpose. In this study, anti-bacterial tests for antibiotic disk susceptibility, minimal inhibitory concentration and minimal bactericidal concentration were performed to evaluate anti-bacterial effect of Hamamelis virginiana against Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae. The results showed that Hamamelis virginiana has anti-bacterial effect on all pathogen strains tested in this study and furthermore Hamamelis virginiana possesses bactericidal effect other than bacteriostatic effect on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, Klebsiella pneumoniae. This study indicates that a natural anti-bacterial medication for oral diseases can be developed using Hamamelis virginiana.

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Bacterial endophytes from ginseng and their biotechnological application

  • Chu, Luan Luong;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.

Pharmacological Evaluation of Proprietary Preparation from Bacterial Metabolites with Special Reference to its Immunomodulatory Actions

  • Auddy, Biswajit;Mitra, Susil K.;Mukherjee, Biswapati
    • Natural Product Sciences
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • A mixture of several bacterial metabolites $(Sterodin{\circledR})$ was used to study its effect on major immunocytes, in vivo and in vitro. This mixture of bacterial metabolites increased number of macrophages and neutrophils and their phagocytic activity in experimental animals for a transient period. BSA induced antibody production was found to be higher in the drug treated group. These results indicated that the bacterial metabolites probably acted through non-specific defence mechanism against invading organisms and the chance of reinfection was reduced.

  • PDF

Control Strategy of Acidified Nutrient Solution on Bacterial Wilt of Tomato Plants (산성배양에 공급에 의한 토마토 풋마름병 방제)

  • 이영근;설균찬
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.744-746
    • /
    • 1998
  • Control effect of acidified nutrient solution on bacterial wilt of tomato plants was tested by examining the degree of bacterial growth inhibition and plant damage due to the acidity. Ralstonia solanacearum, the causal bacterium of bacterial wilt of tomato plants, showed 105 times population reduction when the bacterium was cultured in the acidified nutrient solution (pH 3.5∼4.0). However, fruit yields were decreased only fifteen to twenty percents. These results suggest that control of the bacterial wilt of tomato plants may be possible with supplying acidified nutrient solution.

  • PDF

Effect of Glutamine on the Diclofenac Induced Bacterial Translocation and Lipid Peroxidation (Diclofenac에 의해 유발된 장내세균전위와 지질과산화에 대한 글루타민의 효과)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2005
  • The aim of this study was to examine whether administration of glutamine are able to prevent the NSAID induced bacterial translocation and lipid peroxidation in the rats. The an imals with glutamine were fed with L-glutamine for 5 days before diclofenac administration (100 mg/kg orally). 48 hour after diclofenac administration, intestinal permeability, serum biochemical profiles, and malondialdehyde levels of ileum were measured for evaluation of gut damage. Also, enteric aerobic bacterial counts, number of gram-negatives in mesenteric Iymph nodes, liver, spleen and kidney and malondialdehyde levels in liver, spleen, kidney and plasma were measured. Diclofenac caused the gut damage, enteric bacterial overgrowth, increased bacterial translocation and increased lipid peroxidation. Co-administration of glutamine reduced the gut damage, enteric bacterial overgrowth, bacterial translocation and lipid peroxidation induced by diclofenac. This study suggested that glutamine might effectively prevent non-steroidal anti-inflammatory drug induced bacterial translocation and lipid peroxidation in the rat.