• 제목/요약/키워드: bacterial community assembly

검색결과 4건 처리시간 0.02초

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan;Jia, Fengan;Lv, Rui;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.419-429
    • /
    • 2022
  • American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor

  • Tian, Hailong;Yan, Yingchun;Chen, Yuewen;Wu, Xiaolei;Li, Baoan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.373-384
    • /
    • 2016
  • The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes.

Ralstonia solanacearum Infection Drives the Assembly and Functional Adaptation of Potato Rhizosphere Microbial Communities

  • Zhang Qing;Yang Jida;Fu Chengxiu;Yang Yanli;Liu Xia;Deng Sihe
    • The Plant Pathology Journal
    • /
    • 제40권5호
    • /
    • pp.498-511
    • /
    • 2024
  • Bacterial wilt caused by Ralstonia solanacearum is a destructive disease that affects potato production, leading to severe yield losses. Currently, little is known about the changes in the assembly and functional adaptation of potato rhizosphere microbial communities during different stages of R. solanacearum infection. In this study, using amplicon and metagenomic sequencing approaches, we analyzed the changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere across four stages of R. solanacearum infection. The results showed that R. solanacearum infection led to significant changes in the composition and functions of bacterial and fungal communities in the potato rhizosphere, with various microbial properties (including α,β-diversity, species composition, and community ecological functions) all being driven by R. solanacearum infection. The relative abundance of some beneficial microorganisms in the potato rhizosphere, including Firmicutes, Bacillus, Pseudomonas, and Mortierella, decreased as the duration of infection increased. Moreover, the related microbial communities played a significant role in basic metabolism and signal transduction; however, the functions involved in soil C, N, and P transformation weakened. This study provides new insights into the dynamic changes in the composition and functions of potato rhizosphere microbial communities at different stages of R. solanacearum infection to adapt to the growth promotion or disease suppression strategies of host plants, which may provide guidance for formulating future strategies to regulate microbial communities for the integrated control of soil-borne plant diseases.

RNA-sequencing을 이용한 제주도 인접 바다의 메타전사체 프로파일링 (Marine Metatranscriptome Profiling in the Sea Adjacent to Jeju Island, Korea, by RNA-sequencing)

  • 황진익;강민경;김강은;정승원;이택견
    • 생명과학회지
    • /
    • 제30권7호
    • /
    • pp.625-629
    • /
    • 2020
  • 바다는 바이러스를 포함하는 다양한 생물체의 풍부한 자원을 제공한다. 본 연구에서는 계절에 따른 제주 바다의 해양 미생물 군집을 확인하기 위해 3월과 12월에 해수 샘플을 수집하여 total RNA를 추출, HiSeq2000 및 de novo 전사체 어셈블리를 사용한 NGS를 실시하였다. 그 결과, 3월 및 12월 시료에서 각각 652,984 및 163,759 개의 전사체를 확인하였다. 3월 샘플에서는 해양 박테리아가 우점하였으나 12월 샘플에서는 진핵생물이 우점하였다. 박테리아 군집은 두 샘플간에 상이하였으며, 이는 계절 변화 동안 박테리아 군집이 변화하였음을 보여주었다. 또한, 해양바이러스를 확인하기 위하여, Megablast를 사용하여 바이러스 참조 데이터베이스에 전사체를 검색하였다. 해양박테리아를 감염시키는 박테리오파지가 두 샘플에서 우점하는 것을 확인하였다. 그러나, 우리는 두 개의 전사체에서 다양한 헤르페스바이러스와 관련된 transcripts가 풍부함을 확인하였으며, 이는 제주도 인근 바다에서 물고기를 감염시키는 헤르페스바이러스의 위협 가능성을 나타낸다. 종합하면, 우리의 데이터는 해양 커뮤니티 연구 및 가능한 해양 바이러스 병원체를 식별하는 데 유용할 것이다.