• Title/Summary/Keyword: bacterial biofilm

Search Result 261, Processing Time 0.016 seconds

Antimicrobial effect of infrared diode laser utilizing indocyanine green against Staphylococcus aureus biofilm on titanium surface (티타늄 표면에 형성한 Staphylococcus aureus 바이오필름에 대한 인도시아닌 그린을 활용한 광역학치료의 항미생물 효과)

  • Seung Gi Kim;Si-Young Lee;Jong-Bin Lee;Heung-Sik Um;Jae-Kwan Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.55-63
    • /
    • 2024
  • Purpose: This study aimed to assess the antimicrobial efficacy of an 810-nm infrared diode laser with indocyanine green (ICG) against Staphylococcus aureus on sandblasted, large grit, and acid-etched (SLA) titanium surfaces, comparing its effectiveness with alternative chemical decontamination modalities. Materials and Methods: Biofilms of S. aureus ATCC 25923 were cultured on SLA titanium disks for 48 hours. The biofilms were divided into five treatment groups: control, chlorhexidine gluconate (CHX), tetracycline (TC), ICG, and 810-nm infrared diode laser with ICG (ICG-PDT). After treatment, colony-forming units were quantified to assess surviving bacteria, and viability was confirmed through confocal laser-scanning microscope (CLSM) imaging. Results: All treated groups exhibited a statistically significant reduction in S. aureus (P < 0.05), with notable efficacy in the CHX, TC, and ICG-PDT groups (P < 0.01). While no statistical difference was observed between TC and CHX, the ICG-PDT group demonstrated superior bacterial reduction. CLSM images revealed a higher proportion of dead bacteria stained in red within the ICG-PDT groups. Conclusion: Within the limitations, ICG-PDT effectively reduced S. aureus biofilms on SLA titanium surfaces. Further investigations into alternative decontamination methods and the clinical impact of ICG-PDT on peri-implant diseases are warranted.