• Title/Summary/Keyword: bacterial

Search Result 9,304, Processing Time 0.042 seconds

Applying the Bacterial Meningitis Score in Neonates Diagnosed Meningitis: A Single Center's Experience

  • Park, Sun Young;Seo, Kyoo Hyun;Lee, Jae Min;Lee, Eun Sil;Kim, Saeyoon
    • Neonatal Medicine
    • /
    • v.24 no.1
    • /
    • pp.26-31
    • /
    • 2017
  • Purpose: To identify the factors associated with differential diagnosis of neonatal bacterial meningitis at the earliest opportunities possible and to evaluate the value of the bacterial meningitis score especially in neonates. Methods: We conducted a single-center, retrospective study of neonates diagnosed meningitis at our hospital between January 2000 and March 2014. We compared the general characteristics, clinical manifestations, laboratory findings, bacterial meningitis scores between the bacterial group and the aseptic group. Results: Bacterial meningitis differs significantly from aseptic meningitis in platelet count, the cerebrospinal fluid polymorphonuclear leukocyte count, and the serum protein including also the albumin (P<0.05). Except two infants, the bacterial meningitis score over 2 accurately predict bacterial meningitis in the other 11 infants. Conclusion: The bacterial meningitis score appears highly useful to identify neonatal infants with bacterial meningitis. However, its diagnostic and prognostic value is just 'adjunctive', because low score cannot rule out bacterial meningitis.

The Role of Cytoskeletal Elements in Shaping Bacterial Cells

  • Cho, Hongbaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

Image Analysis of Bacterial Cell Size by Diurnal Changes in Lake Soyang, Korea

  • Choi, Seung-Ik;Ahn, Tae-Seok;Kato, Ken-Ji
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.300-304
    • /
    • 1996
  • To define the effects of zooplankton and phytoplankton to bacteria, bacterial numbers, frequency of dividing cells (FDC) and size distribution were performed with image analysis in the surface layer of Lake Soyang. In August 1992, when Anabaena was blooming, the bacterial number increased at daytime. Bacterial numbers and FDC value had a negative correlation (r = 0.83, P < 0.01). Bacterial size spectrums were dynamically changed during the day and night, especially the small bacteria less than $0.5\;{\mu}m^3$. Meanwhile, in October, after the bloom, the bacterial number was only one third of that in August, even though the FDC was higher than that in August. The bacterial numbers of small size class dropped at 13:00. But the size spectrums were relatively constant during the night time. These results suggest that the bacterial growth was tightly coupled with phytoplankton during Anabaena bloom. And after the bloom, the bacterial number was controlled grazing activity of zooplankton at daytime.

  • PDF

Bacterial endophytes from ginseng and their biotechnological application

  • Chu, Luan Luong;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF

Effect of Glutamine on the Diclofenac Induced Bacterial Translocation and Lipid Peroxidation (Diclofenac에 의해 유발된 장내세균전위와 지질과산화에 대한 글루타민의 효과)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2005
  • The aim of this study was to examine whether administration of glutamine are able to prevent the NSAID induced bacterial translocation and lipid peroxidation in the rats. The an imals with glutamine were fed with L-glutamine for 5 days before diclofenac administration (100 mg/kg orally). 48 hour after diclofenac administration, intestinal permeability, serum biochemical profiles, and malondialdehyde levels of ileum were measured for evaluation of gut damage. Also, enteric aerobic bacterial counts, number of gram-negatives in mesenteric Iymph nodes, liver, spleen and kidney and malondialdehyde levels in liver, spleen, kidney and plasma were measured. Diclofenac caused the gut damage, enteric bacterial overgrowth, increased bacterial translocation and increased lipid peroxidation. Co-administration of glutamine reduced the gut damage, enteric bacterial overgrowth, bacterial translocation and lipid peroxidation induced by diclofenac. This study suggested that glutamine might effectively prevent non-steroidal anti-inflammatory drug induced bacterial translocation and lipid peroxidation in the rat.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

Studies on the Inheritance of Resistance to Bacterial Wilt(Ralstonia solanacearum) in Tobacco(Nicotiana tabacum L.) (연초의 세균성마름병 저항성 유전에 관한 연구)

  • 정석훈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Bacterial wilt(Ralstonia solanacearum) is one of the major diseases of flue-cured tobacco (Nicotiana tabacum L.) in the world. This study was conducted to investigate degree of dominance, selection, and correlation between leaf shape and degree of bacterial wilt resistance in flue-cured tobacco. The degree of disease caused by bacterial wilt was evaluated in parents, F$_1$, F$_2$ and F$_3$ populations of two crosses, BY 4 x NC 95 and BY 4 x Coker 86, in the infected field. The leaf shape index was also measured in parents and F$_2$ population of BY 4 x NC 95. The incidence of bacterial wilt was observed in the middle of June and peaked in late July, when the highest value of pathogen density reached 1.0 x 10$^{6}$ colony forming unit per gram. It was concluded that the inheritance mode of risestance to bacterial wilt in the above two crosses of susceptible and resistant varieties was recessive and polygenic. The resistance to bacterial wilt was significantly correlated with leaf shape in F2 generation of BY 4 x NC 95. But certain plants having narrower leaves were also resistant to bacterial wilt. It is considered that the bacterial wilt resistant lines having narrower leaves could be selected. The selection for bacterial wilt resistance in the F$_2$ population might be effective.

  • PDF

Effect of Glutamine on the Methotrexate Induced Gut Barrier Damage, Bacterial Translocation and Weight Changes in a Rat Model (백서에서 Methotrexate에 의하여 유발된 장관장벽손상 및 장내세균전위와 중량 변화에 대한 글루타민의 효과)

  • Kim, Eun-Jeong;Kim, Jeong-Wook
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The aim of this study was to examine whether administration of glutamine are able to prevent the methotrexate induced gut barrier damage, bacterial translocation, and weight changes. The animals with glutamine were fed with L-glutamine (1.2 and 2.4 mg/kg/day) for 7 days before methotrexate administration (20 mg/kg orally). 48 hour after methotrexate administration, intestinal permeability were measured for an assessment of the gut barrier dysfunction. Also, enteric aerobic bacterial counts, number of gram-negatives in mesenteric lymph node (MLN), liver spleen, kidney and heart were measured for an assessment of the enteric bacterial number and bacterial translocation. Amounts of food intake, body weight changes and organ weight changes of liver spleen, kidney and heart were measured. Methotrexate administration caused body and liver weight loss regardless amounts of food intakes. Methotrexate induced increasing intestinal permeability, enteric bacterial undergrowth and bacterial translocation to MLN, liver and spleen, but not kidney and heart. The supplements with glutamine reduced the intestinal permeability bacterial translocation, and not influences enteric bacterial number, and body and liver weight changes. This study suggested that glutamine might effectively reduce methotrexate induced intestinal damage and bacterial translocation, but not influence body and organ weight loss.

The Experimental Study on the continuous Anti-bacterial Potency of Coptidis rhizoma extract on Cultivation of Staphylococcus species(S. aureus, S. epidermidis) (황련(黃連) 전탕액(煎湯液)이 Staphylococcus species(S.aureus, S.epidermidis)의 배양일에 따른 항균효과의 지속성에 관한 연구)

  • Seo, Hyeong-Sik
    • Journal of Pharmacopuncture
    • /
    • v.10 no.3
    • /
    • pp.71-76
    • /
    • 2007
  • Objectives This experimental study was performed to investigate the continuous anti-bacterial potency of Coptidis rhizoma extract on cultivation of Staphylococcus species(S. aureus, S. epidermidis) that induce eye disease. Methods Minimal inhibitory concentration(MIC) was measured by dropping to $50{\mu}l$ diluted Coptidis rhizoma extract(100%, 10%, 1%, 0.1%) on S. aureus, S. epidermidis that were cultivated from 2 to 6 days. Anti-bacterial potency was measured by the size of inhibition zone with change of volume($20{\mu}l,\;30{\mu}l,\;40{\mu}l,\;50{\mu}l$). Results 1. Anti-bacterial potency of Coptidis rhizoma extract on S. aureus was appeared in 100%, 10% and was the same as anti-bacterial potency of 2 days and 6 days. Anti-bacterial potency with change of volume(100%) was increased in propotion to increase volume on all samples. Anti-bacterial potency with change of volume(10%) was increased in propotion to increase volume on all samples except $20{\mu}l$. Anti-bacterial potency of Coptidis rhizoma extract on S. aureus was appeared continuous. 2. Anti-bacterial potency of Coptidis rhizoma extract on S. epidermidis was appeared in 100%, 10% and was the same as anti-bacterial potency of 2 days and 6 days. Anti-bacterial potency with change of volume(100%) was increased in propotion to increase volume on all samples. Anti-bacterial potency with change of volume(10%) was appeared in $50{\mu}l$. Anti-bacterial potency of Coptidis rhizoma extract on S. epidermidis was appeared continuous. Conclusions Anti-bacterial potency of Coptidis rhizoma extract on cultivation of S. aureus & S. epidermidis was showed continuous.