• Title/Summary/Keyword: bacteria strain B-1

Search Result 236, Processing Time 0.032 seconds

Isolation of N-Acetylmuramoyl-L-Alanine Amidase Gene (amiB) from Vibrio anguillarum and the Effect of amiB Gene Deletion on Stress Responses

  • Ahn Sun-Hee;Kim Dong-Gyun;Jeong Seung-Ha;Hong Gyeong-Eun;Kong In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1416-1421
    • /
    • 2006
  • We identified a gene encoding the N-acetylmuramoyl L-alanine amidase (amiB) of Vibrio anguillarum, which catalyzes the degradation of peptidoglycan in bacteria. The entire open reading frame (ORF) of the amiB gene was composed of 1,722 nucleotides and 573 amino acids. The deduced amino acid sequence of AmiB showed a modular structure with two main domains; an N-terminal region exhibiting an Ami domain and three highly conserved, continuously repeating LysM domains in the C-terminal portion. An amiB mutant was constructed by homologous recombination to study the biochemical function of the AmiB protein in V. anguillarum. Transmission electron microscopy (TEM) revealed morphological differences, and that the mutant strain formed trimeric and tetrameric unseparated cells, suggesting that this enzyme is involved in the separation of daughter cells after cell division. Furthermore, inactivation of the amiB gene resulted in a marked increase of sensitivity to oxidative stress and organic acids.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Effect of Grass Lipids and Long Chain Fatty Acids on Cellulose Digestion by Pure Cultures of Rumen Anaerobic Fungi, Piromyces rhizinflata B157 and Orpinomyces joyonii SG4

  • Lee, S.S.;Ha, J.K.;Kim, K.H.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2000
  • The effects of grass lipids and long chain fatty acids (LCFA; palmitic, stearic and oleic acids), at low concentrations (0.001~0.02%), on the growth and enzyme activity of two strains of anaerobic fungi, monocentric strain Piromyces rhizinflata B157 and polycentric strain Orpinomyces joyonii SG4, were investigated. The addition of grass lipids to the medium significantly (p<0.05) decreased filter paper (FP) cellulose digestion, cellulase activity and fungal growth compared to control treatment. However, LCFA did not have any significant inhibitory effects on fungal growth and enzyme activity, which, however, were significantly (p<0.05) stimulated by the addition of oleic acid as have been observed in rumen bacteria and protozoa. This is the first report to our knowledge on the effects of LCFA on the rumen anaerobic fungi. Continued work is needed to identify the mode of action of LCFA in different fungal strains and to verify whether these microorganisms have ability to hydrogenate unsaturated fatty acids to saturated fatty acids.

Antibiotic Resistance of Bacterial Isolates from Nasal Discharges of Dogs with Respiratory Diseases (개의 비루에서 분리한 원인균의 항생제 내성)

  • 김문선;정종태;강태영;윤영민;이주명;이두식;손원근
    • Journal of Veterinary Clinics
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2004
  • Bacterial pathogens were isolated from 36 dogs with respiratory signs, that were submitted to Veterinary Clinics in Jeju, including Veterinary Medical Teaching Hospital in Cheju National University. Of 36 isolates, 16 (44.4%) bacterial pathogens were Gram-positive and 20 (55.6%) were Gram-negative. Gram-positive bacteria identified with API Staph were 12 S. intermedius (33.3%), 2 S. aureus (5.6%), 1 S. haemolyticum (2.8%), and 1 S. xylosus (2.8%). Gram-negative organisms identified with API 20E or API NE included 8 Bordetella bronchiseptica (22.2%), 6 Escherichia coli (16.7%), 4 Pasteurella spp. (11.1%), 1 Enterobacter intermedius (2.8%), and 1 Oligella ureolytica (2.8%). Both Staphylococcus spp. isolates and Gram-negative pathogens were resistant to one or more antibiotics, including ampicillin (AM), amoxicillin/clavulanic acid (AMC), chloramphenicol (C), cefazolin (CZ), erythromycin (E), gentamicin (GM), kanamycin (K), lincomycin (L), oxacillin (OX), trimethoprim/sulfamethoxazole (SXT), and tetracycline (TE). All Staphylococcus spp. were susceptible to AMC, OX and VA, while many isolates were highly resistant to L (87.5%), E (68.8%), P (62.5%), and AM (56.3%). Antibiotic-resistant patterns of staphylococcal isolates were shown ranges from single to 9-resistant patterns. Resistant rates to antibiotics of Gram-negative bacteria were usually higher than those of Staphylococcus spp. in this study. Most Gram-negative bacteria were highly resistant to L (90.0%), AM (85.0%), E (85.0%), P (85.0%), OX (80.0%), and CZ (75.0%). B. bronchiseptica isolates showed 5 to 8 antibiotics-resistant patterns and Pasteurella spp., 2 to 8-resistant patterns. In particular, all 6 E. coli isolates were resistant to more than 9 different kinds of antibiotics, including one strain resistant to all antibiotics tested.

Growth Responses of seven Intestinal Bacteria Against Phellodendron amurense Root-Derived Materials

  • Kim, Min-Jeong;Lee, Sang-Hyun;Cho, Jang-Hee;Kim, Moo-Key;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The growth responses of Phellodendron amurense root-derived materials against seven intestinal bacteria were examined, using an impregnated paper disk agar diffusion method and spectrometric method under $O_2$-free condition. The biologically active constituent of the P. amurense root extract was characterized as berberine chloride ($C_{20}H_{18}NO_{41}Cl$) using various spectroscopic analyses. The growth responses varied depending on the bacterial strain, chemicals, and dose tested. At 1 mg/disk, berberine chloride strongly inhibited the growth of Clostridium perfringens, and moderately inhibited the growth of Escherichia coli and Streptococcus mutans without any adverse effects on the growth of three lactic acid-bacteria (Bifidobacterium bifidum, B. longum, and Lactobacillus acidophilus). The structure-activity relationship revealed that berberine chloride exhibited more growth-inhibiting activity against C. perfringens, E. coli, and S. mutans than berberine iodide and berberine sulfate. These results, therefore, indicate that the growth-inhibiting activity of the three berberines was much more pronounced as chloridated analogue than iodided and sulphated analogues. As for the morphological effect caused by 1 mg/disk of berberine chloride, most strains of C. perfringens were damaged and killed, indicating that berberine chloride showed a strong inhibition against C. perfringens. As naturally occurring growth-inhibiting agents, the P. amurense root-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria such as clostridia.

Isolation of Egg-Contaminating Bacteria and Evaluation of Bacterial Radiation Sensitivity (계란 오염 세균의 분리 및 분리 균주의 감마선 감수성 평가)

  • Kim, Dong-Ho;Yun, Hye-Jeong;Song, Hyun-Pa;Lim, Byung-Lak;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.774-781
    • /
    • 2008
  • was performed and Staphylococcus sciuri, Bacillus cereus, Escherichia coli, Proteus mirabilis, and Enterococcus faecalis were identified. No Salmonella strain, a typical contaminant of eggs, was found. The radiation sensitivities of isolated bacteria and Salmonella typhimurium, in an inoculated model system, were expressed in $D_{10}$ values. The ranges of $D_{10}$ values shown by S. typhimurium, S. sciuri, B. cereus, E. coli, P. mirabilis, and E. faecalis were 0.365-0.399 kGy, 0.418-0.471 kGy, 1.075-1.119 kGy, 0.280-0.304 kGy, 1.132-1.330 kGy, and 0.993-1.290 kGy, respectively. The growth of all six test bacteria in eggs (inoculated at $10^6-10^7\;CFU/g$) during 3 days of post-irradiation storage at ambient conditions ($25^{\circ}C$) was recorded. S. typhimurium was eliminated by irradiation at 3 kGy, and E. coli and S. sciuri were eliminated by irradiation at 5 kGy. The viable cell counts of B. cereus, P. mirabilis, and E. faecalis in eggs showed 4-6 log reductions after irradiation with 5 kGy.

Molecular Characterization of Some Antilisterial Bacteriocin Genes from Enterococcus faecium and Pediococcus pentosaceus

  • El-Arabi, Nagwa I.;Salim, Rasha G.;Abosereh, Nivien A.;Abdelhadi, Abdelhadi A.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.288-299
    • /
    • 2018
  • Food bio preservation is of major interest in the food industry. Many types of antimicrobial compounds can be produced by lactic acid bacteria (LAB), including bacteriocins. Bacteriocins increase the shelf-life of food by decreasing some food-borne diseases. In this study, a multi-coding sequence of bacteriocin genes was used for primer design to produce bacteriocin genes in Enterococcus faecium AH2 strain and Pediococcus pentosaceus AH1. Multi-coding sequences were aligned to detect conserved sequences in the bacteriocin gene. Eight genes encoding proteins involved in bacteriocin production were isolated and sequenced, including six from E. faecium AH2 (entA, entI, entF, entR, orfA2, orfA3) and two from P. pentoceseus AH1 (papA, pedB), and all gene sequences were deposited in the Gen Bank database under accession numbers LC064146-LC064151, LC101300, and LC101789, respectively. P. pentosaceus AH1 and E. faecium AH2 strains displayed bacteriocin activities of $2610AU\;mL^{-1}$ and $690AU\;mL^{-1}$ and inhibition zones of 26 mm and 19 mm, respectively. Overexpression of entA in E. faecium AH2 increased the bacteriocin and antimicrobial activities.

Phloretin Protects Macrophages from E. coli-Induced Inflammation through the TLR4 Signaling Pathway

  • Chauhan, Anil Kumar;Jang, Mihee;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.333-340
    • /
    • 2020
  • Macrophages are the cells of the first-line defense system, which protect the body from foreign invaders such as bacteria. However, Gram-negative bacteria have always been the major challenge for macrophages due to the presence of lipopolysaccharides on their outer cell membrane. In the present study, we evaluated the effect of phloretin, a flavonoid commonly found in apple, on the protection of macrophages from Escherichia coli infection. RAW 264.7 cells infected with standard E. coli, or virulent E. coli K1 strain were treated with phloretin in a dose-dependent manner to examine its efficacy in protection of macrophages. Our results revealed that phloretin treatment reduced the production of nitric oxide (NO) and generation of reactive oxygen species along with reducing the secretion of proinflammatory cytokines induced by the E. coli and E. coli K1 strains in a concentration-dependent manner. Additionally, treatment of phloretin downregulated the expression of E. coli-induced major inflammatory markers i.e. cyclooxygenase-2 (COX-2) and hemeoxygenase-1 (HO-1), in a concentration dependent manner. Moreover, the TLR4-mediated NF-κB pathway was activated in E. coli-infected macrophages but was potentially downregulated by phloretin at the transcriptional and translational levels. Collectively, our data suggest that phloretin treatment protects macrophages from infection of virulent E. coli K1 strain by downregulating the TLR4-mediated signaling pathway and inhibiting NO and cytokine production, eventually protecting macrophages from E. coli-induced inflammation.

Microbiological Study on the Preservation of Marine Environments I. Distribution of vitamin $B_{12}$, thiamine and biotin in the sea water of Kunsan (해양환경보전에 있어서의 미생물학적 연구 I. 군산 앞바다에 있어서의 Vitamin $B_{12}$, Thiamine 및 Biotin의 분포)

  • Kim Jong Myeon;Cho In Ho;Park Chung Ung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 1983
  • The concentrations of dissolved vitamin $B_{12}$, thiamine and biotin in the water of Gyokpo coast, were determined by microbiological assay methods. Also the relations between the distribution of B group vitamin and other environmental factors were studied. Vitamin $B_{12}$ was assayed with Euglena gracilis strain Z, thiamine with Cryptococous albidus and biotin with Achromo bacter sp. yH-51. It was found that the concentration of B group vitamin in the water of Gyokpo coast were normal level : vitamin $B_{12}$; 1.36-3.95 ng/l, thiamine ; u-0.4 ng/l and biotin; 1.40-14.60 ng/l. The concentration of B group vitamin was high in summer than in winter. In the water of Gyokpo coast during summer, B group vitamin occurred slightly lower level than normal, the concentration suficiently neccessary for phytoplankton development. The concentration of biotin was positively correlated with abundance of phytoplankton, but not aerobic heterotrophic bacteria. It was suggested that the concentration of biotin in water might be much more influenced with the growth of phytoplankton and any environmental factors than bacteria and the other vitamin, especially.

  • PDF

Plant Growth Promotion by Isolated Strain of Bacillus subtilis for Revegetation of Barren Lakeside Area (호안나대지 식생복원을 위한 Bacillus subtilis 분리균주의 식물생장 촉진능)

  • Kim, Kyung-Mi;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • Rhizobacterial strain isolated from barren soil, Bacillus subtilis RFO41 exhibits a high level of phosphate solubilizing activity and produces some phytohormones. Its promoting effect on the growth of Xanthium italicum Moore, a wild plant growing at lakeside barren land and thus a good candidate plant for revegetation of barren lakeside was evaluated in the in situ test for 19 weeks at Lake Paro, Kangwon-do. Strain RFO41 could enhance the dry weight of X. italicum by 67.7%. It also increased the shoot length of X. italicum plant by 21.1% compared to that of uninoculated control. Both growth enhancements had statistical significance. However, the inoculation did not show any effect on the root growth, which might be due to the breakage of tiny root. Denaturing gradient gel electrophoresis analysis showed that the inoculated bacteria were maintained in the soils, and the indigenous bacterial community did not exhibit any significant change. This plant growth promoting capability may be utilized as an environment-friendly and low cost revegetation method, especially for the sensitive areas such as barren lakeside lands.