• Title/Summary/Keyword: bacteria and virus

Search Result 204, Processing Time 0.024 seconds

Application of the CRISPR/Cas System for Point-of-care Diagnosis of Cattle Disease (현장에서 가축질병을 진단하기 위한 CRISPR/Cas 시스템의 활용)

  • Lee, Wonhee;Lee, Yoonseok
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 2020
  • Recently, cattle epidemic diseases are caused by a pathogen such as a virus or bacterium. Such diseases can spread through various pathways, such as feed intake, respiration, and contact between livestock. Diagnosis based on the ELISA (Enzyme-linked immunosorbent assay) and PCR (Polymerase chain reaction) methods has limitations because these traditional diagnostic methods are time consuming assays that require multiple steps and dedicated equipment. In this review, we propose the use of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Cas system based on DNA and RNA levels for early point-of-care diagnosis in cattle. In the CRISPR/Cas system, Cas effectors are classified into two classes and six subtypes. The Cas effectors included in class 2 are typically Cas9 in type II, Cas12 in type V (Cas12a and Cas12b) and Cas13 in type VI (Cas13a and Cas13b). The CRISPR/Cas system uses reporter molecules that are attached to the ssDNA strands. When the Cas enzyme cuts the ssDNA, these reporters either fluoresce or change color, indicating the presence of a specific disease marker. There are several steps in the development of a CRISPR/Cas system. The first is to select the Cas enzyme depending on DNA or RNA from pathogens (viruses or bacteria). Based on that, the next step is to integrate the optimal amplification, transducing method, and signal reporter. The CRISPR/Cas system is a powerful diagnostic tool using a gene-editing method, which is faster, better, and cheaper than traditional methods. This system could be used for early diagnosis of epidemic cattle diseases and help to control their spread.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Content Analysis of Life Science Area in Science Textbooks According to Korean Elementary Curriculum Change (한국 초등학교 교육과정 변천에 따른 과학 교과서 생명영역 내용분석)

  • Koh, Yeon-Sook;Kim, Hyo-Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.203-219
    • /
    • 2016
  • The purpose of this paper was analyzing the contents of life science area in elementary science textbooks according to Korean science curricula change to get suggestions for the advancement of science curriculum. The framework of content analysis was developed by revising TIMSS 2015 life science evaluation framework. The results of this research were as follows: 'The differences of living things and non-living things appearing in the first grade mostly were not included in the 1st, the 6th and the 2009 revised curricula. Contents emphasizing rural life were appeared from 'Teaching themes period' to the 2nd curriculum period, disappeared from the 3rd curriculum period until the 2009 revised curriculum. Contagious disease was emphasized in all elementary grades in the 1st curriculum period, which reflected a social phenomena emphasizing health and hygiene after the Korean War. Mostly fungus was included until the 7th curriculum period and bacteria and virus were added from the 2007 revised curriculum period. The way of improving health was emphasized continuously.' The differences of living things and non-living things should be included in elementary science curriculum for the correct 'life' concept formation of elementary students. 'Strategies for helping the living of descendants' and 'the heredity of animal and plant' which were appeared in the lower grades, should be included at the higher grades with greater depth. The incoming elementary science textbooks also need to include science contents about evolution in greater depth, along with human health.

Economic Analysis, Growth and Pests of Wheat (Triticum aestivum L.) in Gelatin·Chitin Microorganisms-treated Organic Culture (젤라틴·키틴분해미생물을 이용한 밀 유기재배와 관행재배의 생육, 병해충 발생조사 및 경제성 분석)

  • Ahn, Philip;Lee, Jiho;Cha, Kwang-Hong;Seo, Dong-Jun;An, Kyu-Nam;Yoon, Chang-Yong;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.223-240
    • /
    • 2021
  • This study was carried out to investigate the economic value of organic wheat production using gelatin·chitin microorganisms in Gwangsan-gu, Gwangju city. The soil condition of experiment field was clay loam Jisan series. The organically cultivated fields were sprayed gelatin and chitin degrading bacteria. The test was performed at conventionally cultivated field and organically cultivated field. Emergence of weed on organically cultivated field was significantly higher than conventionally cultivated field which sprayed herbicide before seeding. Weed emergence have a critical impact on grain yield. Occurrence of diseases and insect pests were higher than conventionally cultivated fields. In 2019, the amount of lodging in conventionally cultivated field were higher than conventionally cultivated field. In 2020, lodging and wet injury were occur in both field. Comparing yield element between organically and conventionally cultivated experimental area, grain yield in organically cultivated field was shown slightly higher amount than conventionally cultivated field. However in the actual yield of 2019, organically cultivated field shows 20% deceased yield because of overgrown weed. In 2020, weed emergence and yellow mosaic virus by wet injury cause 30% decease in the grain yield in organically cultivated field. Content of protein, carbohydrates, ash, water and fat in the grain were not different significance. In 2019, net incomes of conventionally cultivated wheat was 461,031 won/0.1 ha while organically cultivated wheat was 443,437 won/0.1 ha. In the rate of income, conventionally cultivated field was 83.0% as against organically cultivated field (73.3%). In 2020, net incomes of organically cultivated wheat was 437,812 won/0.1 ha while conventionally cultivated wheat was 418,281 won/0.1 ha. In the rate of income, conventionally cultivated field was 81.6% as against organically cultivated field (73.0%).