• Title/Summary/Keyword: backup node

Search Result 41, Processing Time 0.022 seconds

IR-RBT Codes: A New Scheme of Regenerating Codes for Tolerating Node and Intra-node Failures in Distributed Storage Systems

  • Bian, Jianchao;Luo, Shoushan;Li, Wei;Zha, Yaxing;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5058-5077
    • /
    • 2019
  • Traditional regenerating codes are designed to tolerate node failures with optimal bandwidth overhead. However, there are many types of partial failures inside the node, such as latent sector failures. Recently, proposed regenerating codes can also repair intra-node failures with node-level redundancy but incur significant bandwidth and I/O overhead. In this paper, we construct a new scheme of regenerating codes, called IR-RBT codes, which employs intra-node redundancy to tolerate intra-node failures and serve as the help data for other nodes during the repair operation. We propose 2 algorithms for assigning the intra-node redundancy and RBT-Helpers according to the failure probability of each node, which can flexibly adjust the helping relationship between nodes to address changes in the actual situation. We demonstrate that the IR-RBT codes improve the bandwidth and I/O efficiency during intra-node failure repair over traditional regenerating codes but sacrifice the storage efficiency.

Robust Backup Path Selection in Overlay Routing with Bloom Filters

  • Zhou, Xiaolei;Guo, Deke;Chen, Tao;Luo, Xueshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1890-1910
    • /
    • 2013
  • Routing overlay offers an ideal methodology to improve the end-to-end communication performance by deriving a backup path for any node pair. This paper focuses on a challenging issue of selecting a proper backup path to bypass the failures on the default path with high probability for any node pair. For existing backup path selection approaches, our trace-driven evaluation results demonstrate that the backup and default paths for any node pair overlap with high probability and hence usually fail simultaneously. Consequently, such approaches fail to derive a robust backup path that can take over in the presence of failure on the default path. In this paper, we propose a three-phase RBPS approach to identify a proper and robust backup path. It utilizes the traceroute probing approach to obtain the fine-grained topology information, and systematically employs the grid quorum system and the Bloom filter to reduce the resulting communication overhead. Two criteria, delay and fault-tolerant ability on average, of the backup path are proposed to evaluate the performance of our RBPS approach. Extensive trace-driven evaluations show that the fault-tolerant ability of the backup path can be improved by about 60%, while the delay gain ratio concentrated at 14% after replacing existing approaches with ours. Consequently, our approach can derive a more robust and available backup path for any node pair than existing approaches. This is more important than finding a backup path with the lowest delay compared to the default path for any node pair.

Efficient Mechanism for receiver and sink node in Wireless Sensor Networks (무선 센서 네트워크에서 수신 및 싱크 노드를 위한 효율적인 데이터 전송 방법)

  • Jeon, JunHeon
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.3
    • /
    • pp.65-70
    • /
    • 2020
  • In wireless sensor networks, data packets are send to the sink node. So traffic increases near the sink node. This causes delay and collision. To solve this problem, the proposed mechanism used half rotation antenna. By using a half rotation antenna, the delay of data packets can be reduced. Also we propose a method to efficiently use the energy of the node using BRN(backup receiver node) and increase the lifetime of the entire networks. Our numerical analysis and simulation results show that our mechanism outperforms RI-MAC protocol in terms of energy consumption and transmission delay.

An efficient Step-parents Node selection Technique in MANET (MANET에서 에너지 효율적인 양부 노드의 선택 방법)

  • Lee, Jong-Seung;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.855-857
    • /
    • 2011
  • In this paper, we proposed EEAR(Efficient Energy Alternative Routing). This is a method of selecting a backup node for path routing management. When some node disconnection on the path routing, using pre-selected backup node provides immediately recover the path recovery. When selecting a Step-Parents node on the path management, the node' s energy level and distance information are cared in context-awareness. This not only increased the system' s capacity cost effectively, but also reduce transmission power entire nodes consume energy. As a result, each node could efficiently management and improves the life time for mobile host and extends system coverage.

  • PDF

Adaptive Upstream Backup Scheme based on Throughput Rate in Distributed Spatial Data Stream System (분산 공간 데이터 스트림 시스템에서 연산 처리율 기반의 적응적 업스트림 백업 기법)

  • Jeong, Weonil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5156-5161
    • /
    • 2013
  • In distributed spatial data stream processing, processed tuples of downstream nodes are replicated to the upstream node in order to increase the utilization of distributed nodes and to recover the whole system for the case of system failure. However, while the data input rate increases and multiple downstream nodes share the operation result of the upstream node, the data which stores to output queues as a backup can be lost since the deletion operation delay may be occurred by the delay of the tuple processing of upstream node. In this paper, the adaptive upstream backup scheme based on operation throughput in distributed spatial data stream system is proposed. This method can cut down the average load rate of nodes by efficient spatial operation migration as it processes spatial temporal data stream, and it can minimize the data loss by fluid change of backup mode. The experiments show the proposed approach can prevent data loss and can decrease, on average, 20% of CPU utilization by node monitoring.

A Backup Node Based Fault-tolerance Scheme for Coverage Preserving in Wireless Sensor Networks (무선 센서 네트워크에서의 감지범위 보존을 위한 백업 노드 기반 결함 허용 기법)

  • Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.339-350
    • /
    • 2009
  • In wireless sensor networks, the limited battery resources of sensor nodes have a direct impact on network lifetime. To reduce unnecessary power consumption, it is often the case that only a minimum number of sensor nodes operate in active mode while the others are kept in sleep mode. In such a case, however, the network service can be easily unreliable if any active node is unable to perform its sensing or communication function because of an unexpected failure. Thus, for achieving reliable sensing, it is important to maintain the sensing level even when some sensor nodes fail. In this paper, we propose a new fault-tolerance scheme, called FCP(Fault-tolerant Coverage Preserving), that gives an efficient way to handle the degradation of the sensing level caused by sensor node failures. In the proposed FCP scheme, a set of backup nodes are pre-designated for each active node to be used to replace the active node in case of its failure. Experimental results show that the FCP scheme provides enhanced performance with reduced overhead in terms of sensing coverage preserving, the number of backup nodes and the amount of control messages. On the average, the percentage of coverage preserving is improved by 87.2% while the additional number of backup nodes and the additional amount of control messages are reduced by 57.6% and 99.5%, respectively, compared with previous fault-tolerance schemes.

Design of optimum criterion for opportunistic multi-hop routing in cognitive radio networks

  • Yousofi, Ahmad;Sabaei, Masoud;Hosseinzadeh, Mehdi
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.613-623
    • /
    • 2018
  • The instability of operational channels on cognitive radio networks (CRNs), which is due to the stochastic behavior of primary users (PUs), has increased the complexity of the design of the optimal routing criterion (ORC) in CRNs. The exploitation of available opportunities in CRNs, such as the channel diversity, as well as alternative routes provided by the intermediate nodes belonging to routes (internal backup routes) in the route-cost (or weight) determination, complicate the ORC design. In this paper, to cover the channel diversity, the CRN is modeled as a multigraph in which the weight of each edge is determined according to the behavior of PU senders and the protection of PU receivers. Then, an ORC for CRNs, which is referred to as the stability probability of communication between the source node and the destination node (SPC_SD), is proposed. SPC_SD, which is based on the obtained model, internal backup routes, and probability theory, calculates the precise probability of communication stability between the source and destination. The performance evaluation is conducted using simulations, and the results show that the end-to-end performance improved significantly.

The Multi-Case Self-Healing Algorithm with QoS Guarantee in ATM Networks (ATM망에서 클래스별 QoS 보장을 위한 Multi Case Self-healing방법)

  • Lee, Dong-Wook;Hong, Choong-Seon;Lee, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2C
    • /
    • pp.131-142
    • /
    • 2002
  • It is Proposed thatthe Algorithm for Self healing to restoration the backup VP Occurrence Error in ATM Network. This study focuses on self-healing algorithm to restore failed VP. and backup-VP algorithm, one of the popular self-healing algorithm, is applied in this study. The problem with the existing algorithm is that when backup-VP is failed, there is no solution. This study proposes backup-VP algorithm to guarantee QoS in accordance with class. This study evaluates the effect of failure and proposes two algorithms. One is a disjointed path group to node pair class, and the other is one that applied different backup-VP case by case. Through simulation network restoring ability is compared, analyzed and synthesized.

A Node-Disjoint Multi-Path Routing Protocol in AODV-based Mobile Ad-hoc Networks (AODV 기반 모바일 Ad-hoc 네트워크의 노드 Disjoint 다중경로 라우팅 프로토콜)

  • Kim, Tae-Hun;Chung, Shang-Hwa;Kang, Su-Young;Yoo, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1371-1379
    • /
    • 2009
  • In this paper, we propose a new multi-path routing protocol to provide reliable and stable data transmission in MANET that is composed of high-mobility nodes. The new multi-path routing establishes the main route by the mechanism based on AODV, and then finds the backup route that node-disjoint from the main route by making add nodes in the main route not participate in it. The data transmission starts immediately after finding the main route. And the backup route search process is taking place while data is transmitted to reduce the transmission delay. When either of the main route or the backup route is broken, data is transmitted continuously through the other route and the broken route is recovered to node-disjoint route by the route maintenance process. The result of the simulation based on the Qualnet simulator shows that the backup route exists 62.5% of the time when the main route is broken. And proposed routing protocol improved the packet transmission rate by 2~3% and reduced the end-to-end delay by 10% compared with AODV and AODV-Local Repair.

Performance Enhancement of AODV Routing Protocol Based on Interrupt Message and Backup Path Strategy in MANET (MANET환경에서 Interrupt Message와 Backup path 기법에 기반한 AODV의 성능개선)

  • Lee, Yun-kyung;Kim, Ju-gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1313-1329
    • /
    • 2015
  • In MANET, frequent route breaks lead to repeated route discovery process and this increases control packet overhead and packet drop. AODV-I improves performance of AODV by using the event driven approach which removes periodic Hello message. Unlike the Hello message, Interrupt message which is sent for each event can detect and predict the link failure because it allows node to know the status of the neighbor node. From this characteristics of Interrupt message, performance of AODV-I can be further improved by adding a processing procedures for each type of Interrupt message and it is also possible to improve AODV-I by adding the Backup path scheme because it originally has problems due to a single path of AODV. In this paper, we propose AODV-IB that combines improved Backup path scheme and Interrupt message approach of AODV-I in order to reduce transmission delay and the number of route discoveries. AODV-IB improves AODV-I by adding proper processing procedures for the link failure prediction and detection for each Interrupt message. We also implement improved Backup path strategy in AODV-IB by minimizing delay without additional Control packet. Simulation results, using the simulator QualNet 5.0, indicate that proposed AODV-IB performs better than AODV-I.