• Title/Summary/Keyword: backoff 알고리즘

Search Result 56, Processing Time 0.029 seconds

An Evaluation of Average Registration Time in Highly Mobile Networks with Frequent Collision (고속 모바일 네트워크 환경에서 평균 등록 시간 측정을 이용한 성능 평가)

  • Oh, Kyung-Sik;Ahn, Jong-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.782-785
    • /
    • 2006
  • 셀 내의 모바일 노드들의 수가 많고 셀 간의 이동이 빈번한 고속 모바일 네트워크에서는 기존 802.11 프로토콜로는 좋은 성능을 보장할 수 없다. 셀 내에 새로 진입한 노드들은 네트워크에 참여하기 위해 자신의 존재 여부를 알려야 한다. 802.11 표준에서는 이러한 선행되어야 할 작업을 스캐닝, 인증, 결합의 3가지 단계로 규정한다. 이 등록 작업은 셀 내의 다른 데이터 패킷을 보내려는 노드들과의 경쟁을 통해 이루어진다. 그러므로 셀 내의 노드 수가 많을 경우 기본적인 통신을 위해 선행되어야 할 등록 작업이 지연될 수 있다. 802.11 표준에서는 DCF 방식을 기본 매체 접근 프로토콜로 한다. DCF는 BEB (Binary Exponential Backoff) 알고리즘을 기반으로 한다. BEB 알고리즘의 여러 문제점[5]으로 이를 대체할 알고리즘이 연구되어왔으며, 그룹화를 통해 경쟁하는 노드의 수를 줄이는 방법도 고려되었다. 본 논문에서는 802.11의 성능 평가를 위한 모델링에 Markov chain을 이용한 논문[1]을 기반으로 하나의 노드가 등록 작업에 소요하는 평균 시간을 해석적으로 계산하였다. 셀 내의 전체 노드 수에 증가함에 따라 등록 시간을 계산하고, 직접 시뮬레이션을 통해 수식으로 얻어진 결과와 비교하였다. 또한 그룹화를 시뮬레이션 하여 전체 노드 수에 따라서 적절한 그룹 수의 조정이 그룹화하지 않았을 경우보다 더 나은 성능을 보여줄 수 있다는 것을 보였다.

  • PDF

TDM based MAC protocol for throughput enhancement in dense wireless LANs area (무선 랜 밀집 지역의 전송률 향상을 위한 시분할 매체 접근 제어 프로토콜)

  • Kwon, Hyeok-Jin;Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.534-541
    • /
    • 2018
  • The number of stations existing in the same wireless channel is increasing due to the spread of the wireless LAN devices. CSMA/CA, a conventional wireless LAN protocol, uses a random backoff method. In the random backoff scheme, collision between stations is frequent in a dense region where the number of stations existing in the same channel is several tens or more, and the performance of the performance degradation of such a protocol, the IEEE 802.11ah standard proposed a Restricted Access Window(RAW) wireless access method. RAW improves performance by limiting the number of concurrent access stations by dividing the stations into several groups. In this paper, we propose a method to improve the performance of channel connection by using new group creation, group removal and group relocation algorithm according to traffic change by improving existing RAW method.

Performance Analysis for variation of Minimum Contetion Window at IEEE 802.11 WLAN (IEEE 802.11 WLAN에서 최소 경쟁 윈도우 변화에 따른 성능 분석)

  • Chung, Yun-Sick;Pyo, Ji-Hun;Lim, Seog-Ku
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.92-94
    • /
    • 2007
  • IEEE 802.11 WLAN(Wireless LAN)은 그 편리함과 효율성으로 인하여 수요의 증가 및 기술의 개발이 계속되고 있다. MAC(Medium Access Control)계층 중 기본적인 매체 접근 방식인 DCF(Distributed Coordination Function)는 CSMA/CA 알고리즘을 이용하여 충돌문제를 해결한다. 본 논문에서는 IEEE 802.11 MAC 계층 DCF 방식에서 스테이션간의 충돌확률을 줄이기 위하여 각 스테이션의 경쟁 윈도우 범위 사이에서 임의의 Backoff Time을 설정하는 것에 착안하여 최소 경쟁 윈도우(Minimum Contention Window)의 값이 성능에 어떠한 영향을 미치는가를 시뮬레이션을 이용하여 분석한다.

  • PDF

Performance Evaluation of an Adaptive Collision Avoidance Algorithm for IEEE 802.15.4 (IEEE 802.15.4에서 적응적 충돌 회피 알고리즘의 성능분석)

  • Noh, Ki-Chul;Lee, Seung-Yeon;Shin, Youn-Soon;Ahn, Jong-Suk;Lee, Kang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.267-277
    • /
    • 2011
  • Like other wireless network protocols, IEEE 802.15.4 adopts CA (Collision Avoidance)algorithm to avoid the early collision of a new packet by randomizing its first transmission time rather than its immediate delivery. The traditional CA scheme of IEEE 802.15.4, however, selects the random access time from the predetermined range without considering the degree of current congestion. It probably causes either a long delay to settle in the suitable range for the current network load or frequent clashes especially during the long lasting heavy traffic period. This paper proposes an ACA(Adaptive Collision Avoidance) algorithm adapting the initial backoff range to the undergoing collision variations. It also introduces a mathematical model to predict the performance of ACA algorithm added to IEEE 802.15.4. With only small deviations from corresponding simulations, our analytical model shows that ACA technique can improve the throughput of IEEE 802.15.4 by up-to 41% maximally in addition to shortening the packet delays.

Reader Anti-Collision Algorithm via Estimation of Channel Congestion (채널 혼잡 추정 리더 충돌 방지 알고리즘)

  • Yoo, Jun-Sang;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.46-55
    • /
    • 2009
  • In RFID field, when the neighboring readers try to occupy the same or adjacent channel simultaneously, there exists reader-to-reader interference; it calls reader collision. From the reader collision, the tags cannot response correctly query from the reader. Reader anti-collision schemes have been developed, and particularly, the Listen-Before-Talk(LBT) scheme is proposed to avoid reader collision in ETSI in multi channel environment. However, in ETSI, there is a drawback that the reader collision does not decreases effectively because the reader selects randomly a channel without considering the channel environment and readers try to occupy the channel concurrently. In this paper, we propose a algorithm based on LBT scheme considering multi channel environment as well as made up for the drawbacks of LBT The proposed algorithm applies random backoff, the collision avoidance mechanism. And it can reduce delay because of our proposed estimation mechanism Simulation using OPNET shows that the proposed algorithm achieves higher superiority than that of the simple algorithms in sparse and dense reader mode.

Design of Adaptive DCF algorithm for TCP Performance Enhancement in IEEE 802.11 based Mobile Ad-hoc Networks (IEEE 802.11 기반 이동 ad-hoc 망에서 TCP 성능 향상을 위한 적응적 DCF 알고리즘 설계)

  • Kim, Han-Jib;Lee, Gi-Ra;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.79-89
    • /
    • 2006
  • TCP is the most widely used transport protocol in Internet applications that guarantees a reliable data transfer. But, in the wireless multi-hop networks, TCP performance is degraded because it is designed for wired networks. The main reasons of TCP performance degradation are contention for wireless medium at the MAC layer, hidden terminal problem, exposed terminal problem, packet losses in the link layer, unfairness problem, reordering problem caused by path disconnection, bandwidth waste caused by exponential backoff of retransmission timer due to node's mobility and so on. Specially, in the mobile ad-hoc networks, discrepancy between a station's transmission range and interference range produces hidden terminal problem that decreases TCP performance greatly by limiting simultaneous transmission at a time. In this paper, we propose a new MAC algorithm for mobile ad-hoc networks to solve the problem that a node can not transmit and just increase CW by hidden terminal. In the IEEE 802.11 MAC DCF, a node increases CW exponentially when it fails to transmit, but the proposed algorithm, changes CW adaptively according to the reason of failure so we get a TCP performance enhancement. We show by ns-2 simulation that the proposed algorithm enhances the TCP performance by fairly distributing the transmission opportunity to the failed nodes by hidden terminal problems.

Channel Searching Method of IEEE 802.15.4 Nodes for Avoiding WiFi Traffic Interference (WiFi 트래픽 간섭을 피하기 위한 IEEE 802.15.4 노드의 채널탐색방법)

  • Song, Myong Lyol
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.19-31
    • /
    • 2014
  • In this paper, a parallel backoff delay procedure on multiple IEEE 802.15.4 channels and a channel searching method considering the frequency spectrum of WiFi traffic are studied for IEEE 802.15.4 nodes to avoid the interference from WiFi traffic. In order to search the channels being occupied by WiFi traffic, we analyzed the methods measuring the powers of adjacent channels simultaneously, checking the duration of measured power levels greater than a threshold, and finding the same periodicity of sampled RSSI data as the beacon frame by signal processing. In an wireless channel overlapped with IEEE 802.11 network, the operation of CSMA-CA algorithm for IEEE 802.15.4 nodes is explained. A method to execute a parallel backoff procedure on multiples IEEE 802.15.4 channels by an IEEE 802.15.4 device is proposed with the description of its algorithm. When we analyze the data measured by the experimental system implemented with the proposed method, it is observed that medium access delay times increase at the same time in the associated IEEE 802.15.4 channels that are adjacent each other during the generation of WiFi traffic. A channel evaluation function to decide the interference from other traffic on an IEEE 802.15.4 channel is defined. A channel searching method considering the channel evaluations on the adjacent channels together is proposed in order to search the IEEE 802.15.4 channels interfered by WiFi, and the experimental results show that it correctly finds the channels interfered by WiFi traffic.

Design and Implementation of HomePNA 2.0 MAC Controller Circuit (HomePNA 2.0 MAC Controller 회로의 설계 및 구현)

  • Kim, Jong-Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.1-10
    • /
    • 2006
  • The Home Phoneline Networking Alliance(HomePNA) 2.0 technology can establish a home network using existing in-home phone lines, which provides a channel rate of 4-32 Mbps. HomePNA 2.0 Medium Access Control(MAC) protocol adopts an IEEE 802.3 Carrier Sense Multiple Access with Collision Detection(CSMA/CD) access method, Quality of Service(QoS) algorithm, and Distributed Fair Priority Queuing(DFPQ) collision resolution algorithm. In this paper, we describe some performance analysis results of HomePNA 2.0 MAC protocol and the requirements of HomePNA 2.0 MAC controller. Then, we propose the architecture of HomePNA 2.0 MAC controller circuit, show the simulation result of each block included in HomePNA 2.0 MAC controller, and present the HomePNA 2.0 transceiver chip that we have implemented.

A Study on the CSMA/CA Performance Improvement based IEEE 802.15.6 (IEEE 802.15.6 기반 CSMA/CA 성능 향상에 관한 연구)

  • Lee, Jung-Jae;Kim, Ihn-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1225-1230
    • /
    • 2015
  • MAC protocol for WBAN performs CSMA/CA(:Carrier Sense Multiple Access with Collision Avoidance)algorithm that handles traffic which occurs in emergency with top priority in order to deal with variable data of sensor node for medicine. Emergency message that node sends undergoes collision and delay of transmission by retransmission of emergency message and waste of energy by retransmission. This paper suggests algorithm that minimizes loss of frame caused by collision and applies different backoff parameters by setting order of priority between MAC instruction frame and data frame in CSMA/CA algorithm case which applies order of priority queuing to improve aforementioned problem. According to performance evaluation, it has been found that using suggested MAC protocol showed lower collision probability, higher packet transmission processing ratio and lower packet loss compared with using IEEE 802.15.6.

Performance Analysis on DCF Considering the Number of Consecutive Successful Transmission in Wireless LAN (무선랜에서 연속적인 전송성공 횟수를 고려한 DCF 성능분석)

  • Lim, Seog-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.388-394
    • /
    • 2008
  • In this paper, MAC(Medium Access Control) algorithm for the IEEE 802.11 DCF(Distributed Coordination Function) improving the performance is proposed and analyzed by simulation. The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF and PCF(Point Coordination function). The DCF controls the transmission based on CSMA/CA(Carrier Sense Multiple Access With Collision Avoidance). The DCF shows excellent performance relatively in situation that competition station is less but has a problem that performance is fallen from throughput and delay viewpoint in situation that competition station is increased. This paper proposes an enhanced DCF algorithm that increases the CW to maximal CW after collision and decreases the CW smoothly after successful transmission in order to reduce the collision probability by utilizing the current status information of WLAN. To prove efficiency of proposed algorithm, a lots of simulations are conducted and analyzed.