• Title/Summary/Keyword: backhaul

Search Result 88, Processing Time 0.027 seconds

Analysis on the Path Length of M/W Access Link for Mobile Backhaul Design (이동통신 백홀 설계를 위한 M/W 억세스 링크의 경로길이 분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.607-613
    • /
    • 2015
  • In order to design M/W(microwave) short backhaul above 10 GHz to meet the increase in mobile traffic demand, the rain attenuation as well as the atmospheric conditions such as Earth bulge and Fresnel zone should be considered. In this paper, the path lengths have been estimated theoretically in various frequency bands using the Korean standard rain rate, and an example of path profile has been analyzed in urban area utilizing spectrum management intelligence system (SMIS). These derived minimum path lengths in various frequency bands are compared to the foreign them, and then will be proposed to improve the Korean minimum path length unitized to 10 km. This paper will provide useful information for microwave engineers in designing a M/W access link, and be utilized to make an efficient usage of high frequency bands for the short mobile broadband backhaul.

The Effects and Methods of Backhaul transportation (컨테이너 복화운송의 효율화 방안 및 효과)

  • Kim, Hwanseong;Kim, Eunji;Jeong, Boksun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.223-224
    • /
    • 2014
  • Along with container freights keep increasing globally, lots of containers used for inland distribution increase steadily too. In Korea, there are many modes to transfer container freights such as roadway, railroad, coastal shipment. The roadway transportation is the most common but it is considered as the most inefficient mode. This paper studies about reasons that affect to the inefficiency of roadway transport and finds solution to resolve the problem. First backhaul transportation is addressed and some suggested solutions are presented such as construction of inland inspection center or managing efficiently container management. Then mathematical model is used to show the quantitative evaluation of backhaul transport solution.

  • PDF

Frame Synchronization for Mobile WiMAX Femtocells Using IEEE802.11 Based Wireless Backhaul (IEEE 802.11 기반의 무선 백홀을 사용하는 Mobile WiMAX 펨토셀을 위한 프레임 동기화 기법)

  • Choi, Ji-Hoon;Oh, Hyuk-Jun;Yun, Jae-Yeun;Ko, Hyun-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.667-679
    • /
    • 2010
  • The use of femtocells in buildings and homes has been widely studied as a means to enlarge the cell coverage and increase the network capacity of mobile communication systems. Femtocells for Mobile WiMAX (M-WiMAX) using time division duplexing (TDD) requires frame synchronization with neighboring base stations to avoid interference between uplink and downlink signals. In this paper, we propose a new frame synchronization method for femtocell using IEEE 802.11 based wireless backhaul, which transfers the time information of mobile network to femtocells via the beacon signal provided by IEEE 802.11. Also, in order to reduce timing error of the proposed method, we modify the collision avoidance scheme in the transmitter of IEEE 802.11 and apply a timing estimation technique designed in the sense of least squares to the receiver of IEEE 802.11. Through computer simulations using the proposed scheme, we evaluate the performance of frame synchronization for femtocells and show that the recovered timing information satisfies the timing specification defined by M-WiMAX standard.

Backhaul Resource Allocation Protocol for Underwater Cellular Communication Networks (수중 셀룰러 통신 네트워크에서 백홀 자원분배 프로토콜에 관한 연구)

  • Yun, Changho;Park, Jong-Won;Choi, Suhan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.393-402
    • /
    • 2017
  • Just like terrestrial cellular networks, underwater cellular communication networks, which can manage the overall network resource by adaptively allocating backhaul resource for each base station according to its ingress traffic, are necessary. In this paper, a new resource allocation protocol is proposed for the underwater cellular communication network, allocating backhaul resource of a base station proportional to its ingress traffic to the base station. This protocol is classified into two types dependent upon allocation period: the resource allocation protocol with adaptive period and that with fixed period. In order to determine a proper resource allocation protocol, the performance of the two protocols, in terms of reception rate, message overhead, and latency is compared and investigated via simulation. As a result, the resource protocol with adaptive period outperforms that with fixed period; the resource allocation protocol with fixed period results in a maximum of $10^2$ order longer queueing delay as well as $10^2$ order greater message overhead than that with adaptive period.

A Study on the Effective Usage of mmWave Bands for 5G Backhaul Links (5G 백홀 링크를 위한 밀리미터파 대역의 효율적 이용에 관한 연구)

  • Kang, Young-heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • Since scarcity of spectrum in future mobile networks, millimeter wave frequencies from 30 GHz to 300 GHz have been proposed to be used in an important part of 5G mobile communication backhaul links to provide several giga bits services. In ITU-R has been invited to conduct and complete in time for WRC-19 the appropriate studies to determine the spectrum needs for the terrestrial component of IMT in the frequency range between 24.25 GHz and 86 GHz. Also, small cells such as a femtocell, and heterogeneous networks have been deployed through world in order to enhance the communication capacity. At this stage, it is important to develop millimeter wave frequencies to provide 5G mobile broadband services, and thus this paper proposes the effective usage of these frequencies by summarizing the FCC allocation of millimeter waves, their propagation characteristics, the required minimum path length, and the interference effect.

Reduced Feedback Beamforming with a Large Antenna Array in Wireless Backhaul Downlink Systems (거대 배열 안테나 무선 백홀 하향 링크 시스템에서 피드백 량을 줄이기 위한 빔 형성 방법)

  • Park, Jaebum;Kwon, Girim;Park, Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1903-1913
    • /
    • 2016
  • In this paper, we propose 2-stage beamformer with linear receiver in wireless backhaul downlink system where macro base station has large antenna array with sub-array structure. Also, to compare the system capacity, we apply 3-stage beamformer with zero-forcing precoder and calculate the achievable sum rate of received small cell base stations. Considering scattering and path-loss property of wireless backhaul channel, we combine precoding technique for spatial multiplexing and beamforming technique to overcome path-loss. Therefore, we design DFT-based fixed beam patterns for the first stage. The simulation results show that considering spatial multiplexing, proposed 2-stage beamformer with linear receiver can increase the achievable sum rate as well as reduce the feedback information.

The Improvements for 3GPP LTE-Advanced Relay (3GPP LTE-Advanced을 위한 Relay 개선 방안)

  • Park, Byoung-Seong;Kim, Sang-Ha;Chang, Il-Doo;Lee, Hee-Bong;Kwon, Kyoung-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1647-1658
    • /
    • 2011
  • This paper suggests the methods to improve the wireless backhaul link of the Relay FDD mode that 3GPP LTE-Advanced supports. New RRC message and Relay startsup procedure are introduced to apply Carrier Aggregation in the Relay wireless backhaul. Also, we design new reference signal that makes Type 1 Relay operated in full-duplexing, expecting to maximize the radio resource utilization. And, we propose the efficient configuration for the periodic uplink control information under the backhaul subframe allocation method in LTE-Advanced Relay. Hereafter, the standard activities in the 3GPP RAN is supposed to focus on the improvement of the LTE-Advanced features. Therefore, the suggestions in this paper are expected to be actively discussed in the LTE-Advanced future releases.

Performance Evaluation of Caching in PON-based 5G Fronthaul (PON기반 5G 프론트홀의 캐싱 성능 평가)

  • Jung, Bokrae
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • With the deployment of 5G infrastructure, content delivery network (CDN) will be a key role to provide explosive growing services for the independent media and YouTube which contain high-speed mobile contents. Without a local cache, the mobile backhaul and fronthaul should endure huge burden of bandwidth request for users as the increase number of direct accesses from contents providers. To deal with this issue, this paper fist presents both fronthaul solutions for CDN that use dark fibers and a passive optical network (PON). On top of that, we propose the aggregated content request specialized for PON caching and evaluate and compare its performance to legacy schemes through the simulation. The proposed PON caching scheme can reduce average access time of up to 0.5 seconds, 1/n received request packets, and save 60% of backhaul bandwidth compared to the no caching scheme. This work can be a useful reference for service providers and will be extended to further improve the hit ratio of cache in the future.

Space Diversity Combining Scheme Using Phase Difference between Main and Diversity Signals (메인과 다이버시티 신호사이 위상차를 이용한 공간 다이버시티 결합방법)

  • Jung, Gillyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.44-51
    • /
    • 2015
  • The deployment of high capacity backhaul is required due to explosive growth in mobile data services. For rapid backhaul deployment, point to point microwave is a much easier and cheaper technology. The space diversity scheme is used in point to point microwave links. The purpose of space diversity is to overcome fading by combining signals from two separate receiver antennas. For signal combining algorithm, maximum power and minimum distortion methods were used and these algorithms were reported not to be good enough for robustness in selective fading. In this paper, a more practically efficient signal combining scheme from the main and diversity branch is proposed and evaluated in selective fading channel. The proposed algorithm has shown significant performance improvement in terms of signal spectrum.

Uplink Pilot Signal Design for Mobile Wireless Backhaul (이동무선백홀을 위한 상향링크 파일럿 신호 설계)

  • Choi, Seung Nam;Kim, Ilgyu;Kim, Dae Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1005-1013
    • /
    • 2015
  • In this paper, an uplink pilot signal structure is proposed for millimeter wave(mmWave)-based mobile wireless backhaul. For the transmit diversity of two antenna ports, uplink pilot signals generated from the Zadoff-Chu sequence can be mapped in an interleaved mode or continuous mode on the frequency axis, and channel estimation algorithms are different depending on the pilot signal mapping schemes. Through a simulation under Rayleigh fading channel assuming a subway scenario, the interleaved mapping scheme showed no performance degradation compared to the continuous mapping scheme and the implementation complexity of the uplink channel estimator was reduced due to the interleaved mapping scheme.