• Title/Summary/Keyword: background noise

Search Result 964, Processing Time 0.027 seconds

Real-time Moving Object Detection Based on RPCA via GD for FMCW Radar

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.103-114
    • /
    • 2019
  • Moving-target detection using frequency-modulated continuous-wave (FMCW) radar systems has recently attracted attention. Detection tasks are more challenging with noise resulting from signals reflected from strong static objects or small moving objects(clutter) within radar range. Robust Principal Component Analysis (RPCA) approach for FMCW radar to detect moving objects in noisy environments is employed in this paper. In detail, compensation and calibration are first applied to raw input signals. Then, RPCA via Gradient Descents (RPCA-GD) is adopted to model the low-rank noisy background. A novel update algorithm for RPCA is proposed to reduce the computation cost. Finally, moving-targets are localized using an Automatic Multiscale-based Peak Detection (AMPD) method. All processing steps are based on a sliding window approach. The proposed scheme shows impressive results in both processing time and accuracy in comparison to other RPCA-based approaches on various experimental scenarios.

The Error of the Method of Angular Sections of Microwave Sounding of Natural Environments in the System of Geoecological Monitoring

  • Fedoseeva, E.V.;Kuzichkin, O. R.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • The article deals with the problems of application of microwave methods in systems of geoecological monitoring of natural environments and resources of the agro-industrial complex. It is noted that the methods of microwave radiometry make it possible, by the power of the measured intrinsic radio-thermal radiation of the atmosphere, when solving inverse problems using empirical and semi-empirical models, to determine such parameters of the atmosphere as thermodynamic temperature, humidity, water content, moisture content, precipitation intensity, and the presence of different fractions of clouds.In addition to assessing the meteorological parameters of the atmosphere and the geophysical parameters of the underlying surface based on the data of microwave radiometric measurements, it is possible to promptly detect and study pollution of both the atmosphere and the earth's surface. A technique has been developed for the analysis of sources of measurement error and their numerical evaluation, because they have a significant effect on the accuracy of solving inverse problems of reconstructing the values of the physical parameters of the probed media.To analyze the degree of influence of the limited spatial selectivity of the antenna of the microwave radiometric system on the measurement error, we calculated the relative measurement error of the ratio of radio brightness contrasts in two angular directions. It has been determined that in the system of geoecological monitoring of natural environments, the effect of background noise is maximal with small changes in the radiobrightness temperature during angular scanning and high sensitivity of the receiving equipment.

A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition

  • TAYACHI, Hana;GABZILI, Hanen;LACHIRI, Zied
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2022
  • During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.

Feasibility study of β-ray detection system for small leakage from reactor coolant system

  • Jang, Jaeyeong;Jeong, Jae Young;Park, Junesic;Cho, Young-Sik;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2748-2754
    • /
    • 2022
  • Because existing reactant coolant system (RCS) leakage detection mechanisms are insensitive to small leaks, a real-time, direct detection system with a detection threshold below 0.5 gpm·hr-1 was studied. A beta-ray detection system using a silicon detector with good energy resolution for beta rays and a low gamma-ray response was proposed. The detection performance in the leakage condition was evaluated through experiments and simulations. The concentration of 16N in the coolant corresponding to a coolant leakage of 0.5 gpm was calculated using the analytic method and ORIGEN-ARP. Based on the concentration of 16N and the measurement of the silicon detector with 90Sr/90Y, the beta-ray count rate was estimated using MCNPX. To evaluate the effect of gamma rays inside the containment building, the signal-to-noise ratio (SNR) was calculated. To evaluate the count rate ratio, the radiation field inside the containment building was simulated using MCNPX, and response evaluation experiments were performed using beta and gamma rays on the silicon detector. The expected beta-ray count rate at 0.5 gpm leakage was 7.26 × 105 counts/sec, and the signal-to-background count rate ratio exceeded 88 for a transport time of 10 s, demonstrating its suitability for operation inside a reactor containment building.

A 10-year overview of chronic orofacial pain in patients at an oral medicine center in Iran

  • Taheri, Jamile Bigom;Anbari, Fahimeh;Sani, Sahba Khosousi;Mirmoezi, Seyed Mohammad;Khalighi, Hamid Reza
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.4
    • /
    • pp.289-294
    • /
    • 2022
  • Background: Orofacial pain is defined as pain felt in the soft or hard tissues of the head, face, mouth, and neck. Chronic orofacial pain is often challenging to diagnose and difficult to treat. Due to the lack of available information about the prevalence and clinical form of orofacial pain, this study aimed to evaluate the characteristics of chronic orofacial pain in patients presenting at the Department of Oral Medicine of Shahid Beheshti Dental School between 2012 and 2022. Methods: In this retrospective study, we evaluated the files of 121 patients at the Department of Oral and Maxillofacial Diseases of Shahid Beheshti Dental School, which were completed during 2012-2022. We extracted the required information from these files. Results: In total, 121 files were included in the study (30 male, 91 female). The mean age of the patients was 43.68 ± 16.79 years. The most common diagnosis in patients with chronic orofacial pain was temporomandibular disorders (TMD) (55.3%). Among pain-related factors, psychological factors showed the highest frequency (30.5%). Opening and closing (43.8%) had the highest frequency among factors that increased pain, and the rest (6.6%) had the highest frequency among the factors that reduced pain. Most patients experienced unilateral pain over the masseter area. Most patients reported their pain intensity to be greater than 7 in the verbal analog scale (VAS). The most common symptom associated with pain was joint noise (37.1%). Conclusion: A ten-year retrospective evaluation of patient files showed that more than half of the patients with chronic orofacial pain had TMD.

Influence of Stimulus Polarity on the Auditory Brainstem Response From Level-Specific Chirp

  • Dzulkarnain, Ahmad Aidil Arafat;Salamat, Sabrina;Shahrudin, Fatin Amira;Jamal, Fatin Nabilah;Zakaria, Mohd Normani
    • Journal of Audiology & Otology
    • /
    • v.25 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Background and Objectives: No known studies have investigated the influence of stimulus polarity on the Auditory Brainstem Response (ABR) elicited from level-specific (LS) chirp. This study is important as it provides a better understanding of the stimulus polarity selection for ABR elicited from LS chirp stimulus. We explored the influence of stimulus polarity on the ABR from LS chirp compared to the ABR from click at 80 dBnHL in normal-hearing adults. Subjects and Methods: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 μV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations. Results: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found. Conclusions: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.

Effect of Speech Degradation and Listening Effort in Reverberating and Noisy Environments Given N400 Responses

  • Kyong, Jeong-Sug;Kwak, Chanbeom;Han, Woojae;Suh, Myung-Whan;Kim, Jinsook
    • Korean Journal of Audiology
    • /
    • v.24 no.3
    • /
    • pp.119-126
    • /
    • 2020
  • Background and Objectives: In distracting listening conditions, individuals need to pay extra attention to selectively listen to the target sounds. To investigate the amount of listening effort required in reverberating and noisy backgrounds, a semantic mismatch was examined. Subjects and Methods: Electroencephalography was performed in 18 voluntary healthy participants using a 64-channel system to obtain N400 latencies. They were asked to listen to sounds and see letters in 2 reverberated×2 noisy paradigms (i.e., Q-0 ms, Q-2000 ms, 3 dB-0 ms, and 3 dB-2000 ms). With auditory-visual pairings, the participants were required to answer whether the auditory primes and letter targets did or did not match. Results: Q-0 ms revealed the shortest N400 latency, whereas the latency was significantly increased at 3 dB-2000 ms. Further, Q-2000 ms showed approximately a 47 ms delayed latency compared to 3 dB-0 ms. Interestingly, the presence of reverberation significantly increased N400 latencies. Under the distracting conditions, both noise and reverberation involved stronger frontal activation. Conclusions: The current distracting listening conditions could interrupt the semantic mismatch processing in the brain. The presence of reverberation, specifically a 2000 ms delay, necessitates additional mental effort, as evidenced in the delayed N400 latency and the involvement of the frontal sources in this study.

Influence of Stimulus Polarity on the Auditory Brainstem Response From Level-Specific Chirp

  • Dzulkarnain, Ahmad Aidil Arafat;Salamat, Sabrina;Shahrudin, Fatin Amira;Jamal, Fatin Nabilah;Zakaria, Mohd Normani
    • Korean Journal of Audiology
    • /
    • v.25 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Background and Objectives: No known studies have investigated the influence of stimulus polarity on the Auditory Brainstem Response (ABR) elicited from level-specific (LS) chirp. This study is important as it provides a better understanding of the stimulus polarity selection for ABR elicited from LS chirp stimulus. We explored the influence of stimulus polarity on the ABR from LS chirp compared to the ABR from click at 80 dBnHL in normal-hearing adults. Subjects and Methods: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 μV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations. Results: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found. Conclusions: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers

  • Golinko, Vasyl;Cheberyachko, Serhiy;Deryugin, Oleg;Tretyak, Olena;Dusmatova, Olga
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.543-549
    • /
    • 2020
  • Background: The working conditions of bus drivers are difficult; they lead to occupational diseases and require careful study, particularly in Ukraine. The objective of the article is the description of occupational health risks of passenger bus drivers that lead to deteriorating health. Methods: The risk assessment was performed using a modified Risk Score method, which allowed determining the generalized level of danger to the driver's health. The hygienic hazards level was assessed as based on Stevenson's law, which was generalized later. Results: Based on the modification of the Risk Score method, it was possible to depart from expert assessments method of the risk level and calculate the general indicator based on the degree of dependence of the impact on the human body on its intensity, proposed by V. Minko. This allows objective determining of the impact of hygiene hazards on the health of the driver and to predict the occurrence of occupational diseases associated with the cardiovascular system, musculoskeletal system, and partial or complete disability due to the accumulation of emotional fatigue. The hazard assessment was carried out for three brands of passenger buses common in Ukraine, in which the driver is exposed to the dangers of fever, vibration, noise, harmful impurities in the bus cabin, and emotional load. Conclusion: The health of drivers in the cabins of passenger buses is most affected by hygiene hazards: fever, vibration, and emotional stress. The generalized level of risk is calculated by the modified method of Risk Score is 0.83; -0.99, -0.92 respectively.