• Title/Summary/Keyword: background model

Search Result 3,409, Processing Time 0.034 seconds

Improved non-parametric Model for Moving object segmentation by null hypothesis (귀무가설을 이용한 비모수 움직임 영상 검출 모델의 개선)

  • Lee, Ki-Sun;Na, Sang-Il;Lee, Jun-Woo;Jeong, Dong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.249-250
    • /
    • 2007
  • Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a improved non-parametric background model by null hypothesis. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.

  • PDF

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Fast Speaker Identification Using a Universal Background Model Clustering Method (Universal Background Model 클러스터링 방법을 이용한 고속 화자식별)

  • Park, Jumin;Suh, Youngjoo;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.216-224
    • /
    • 2014
  • In this paper, we propose a new method to drastically reduce computational complexity in Gaussian Mixture Model (GMM)-based Speaker Identification (SI). Generally, GMM-based SI systems have very high computational complexity proportional to the length of the test utterance, the number of enrolled speakers, and the GMM size. These make the SI systems difficult to be used in various real applications in spite of their broad applicability. Thus, a trade-off between computational complexity and identification accuracy is considered as a primary issue for practical applications. In order to reduce computational complexity sharply with a little loss of accuracy, we introduce a method based on the Universal Background Model (UBM) clustering approach and then we show that it can be used successfully in real-time applications. In experiments with the proposed algorithm, we obtained a speed-up factor of 6 with a negligible loss of accuracy.

Dynamic Modeling of Eigenbackground for Object Tracking (객체 추적을 위한 고유 배경의 동적 모델링)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2012
  • In this paper, we propose an efficient dynamic background modelling method by using eigenbackground to extract moving objects from video stream. Even if a background model has been created, the model has to be updated to adapt to change due to several reasons such as weather or lighting. In this paper, we update a background model based on R-SVD method. At this time we define a change ratio of images and update the model dynamically according this value. Also eigenbackground need to be modelled by using sufficient training images for accurate models but we reorganize input images to reduce the number of images for training models. Through simulation, we show that the proposed method improves the performance against traditional eigenbackground method without background updating and a previous method.

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

Multiple Moving Object Tracking Using The Background Model and Neighbor Region Relation (배경 모델과 주변 영역과의 상호관계를 이용한 다중 이동 물체 추적)

  • Oh, Jeong-Won;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.361-369
    • /
    • 2002
  • In order to extract motion features from an input image acquired by a static CCD-camera in a restricted area, we need a robust algorithm to cope with noise sensitivity and condition change. In this paper, we proposed an efficient algorithm to extract and track motion features in a noisy environment or with sudden condition changes. We extract motion features by considering a change of neighborhood pixels when moving objects exist in a current frame with an initial background. To remove noise in moving regions, we used a morphological filter and extracted a motion of each object using 8-connected component labeling. Finally, we provide experimental results and statistical analysis with various conditions and models.

Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyung;Cho, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.387-391
    • /
    • 2008
  • For the detection of moving objects, background subtraction methods are widely used. In case the background has variation, we need to update the background in real-time for the reliable detection of foreground objects. Gaussian mixture model (GMM) combined with probabilistic learning is one of the most popular methods for the real-time update of the background. However, it does not work well in the complex and dynamic backgrounds with high traffic regions. In this paper, we propose a new method for modelling and updating more reliably the complex and dynamic backgrounds based on the probabilistic learning and the layered processing.

Multiple Camera-based Person Correspondence using Color Distribution and Context Information of Human Body (색상 분포 및 인체의 상황정보를 활용한 다중카메라 기반의 사람 대응)

  • Chae, Hyun-Uk;Seo, Dong-Wook;Kang, Suk-Ju;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.939-945
    • /
    • 2009
  • In this paper, we proposed a method which corresponds people under the structured spaces with multiple cameras. The correspondence takes an important role for using multiple camera system. For solving this correspondence, the proposed method consists of three main steps. Firstly, moving objects are detected by background subtraction using a multiple background model. The temporal difference is simultaneously used to reduce a noise in the temporal change. When more than two people are detected, those detected regions are divided into each label to represent an individual person. Secondly, the detected region is segmented as features for correspondence by a criterion with the color distribution and context information of human body. The segmented region is represented as a set of blobs. Each blob is described as Gaussian probability distribution, i.e., a person model is generated from the blobs as a Gaussian Mixture Model (GMM). Finally, a GMM of each person from a camera is matched with the model of other people from different cameras by maximum likelihood. From those results, we identify a same person in different view. The experiment was performed according to three scenarios and verified the performance in qualitative and quantitative results.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

Improved Block-based Background Modeling Using Adaptive Parameter Estimation (적응적 파라미터 추정을 통한 향상된 블록 기반 배경 모델링)

  • Kim, Hanj-Jun;Lee, Young-Hyun;Song, Tae-Yup;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2011
  • In this paper, an improved block-based background modeling technique using adaptive parameter estimation that judiciously adjusts the number of model histograms at each frame sequence is proposed. The conventional block-based background modeling method has a fixed number of background model histograms, resulting to false negatives when the image sequence has either rapid illumination changes or swiftly moving objects, and to false positives with motionless objects. In addition, the number of optimal model histogram that changes each type of input image must have found manually. We demonstrate the proposed method is promising through representative performance evaluations including the background modeling in an elevator environment that may have situations with rapid illumination changes, moving objects, and motionless objects.