• Title/Summary/Keyword: background information

Search Result 4,897, Processing Time 0.036 seconds

Dynamic Mosaic based Compression (동적 모자이크 기반의 압축)

  • 박동진;김동규;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1944-1947
    • /
    • 2003
  • In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.

  • PDF

Analysis on the Backgrounds Expression for 3D Animation (3D 애니메이션의 배경 표현에 관한 분석)

  • Park, Sung-Dae;Jung, Yee-Ji;Kim, Cheeyong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.268-276
    • /
    • 2015
  • This article analyzes the background representation of 3D animation and look at what its proper background expression. With the development of computer graphics technology, the background of the 3D animations can be expressed as The actual background. In contrast, "The Smurfs" which was released recently was created to take the actual background. However, 3D animation with real background is not appropriate in terms of creative expression space in the main role of the animation. In this Study, we analyze the character and background of the animation made in 3D graphics. Based on this, we propose a correct representation of 3D animation background.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

A Study on the Relation between Background Information and Educational Achievement for Mathematics (배경변인과 수학 학업성취도 사이의 관계 연구)

  • Ko Jung-Hwa
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.239-263
    • /
    • 2006
  • The purpose of the National Assessment of Educational Achievement(NAEA) is not only to assess educational progress and achievement but also to collect background information affecting educational achievement. It is important to know which factors affect the National Assessment of Educational Achievement(NAEA) and to explore how much those factors show the educational effect. In this study, first, we examined general characteristics of the survey with relation to the background information. Second, we analyzed the relationships between test scores and information on the students' profile such as background, extracurricular activities, and information on the school profile in NAEA 2004. Third, we suggested some educational policies on the basis of those analysis and indicated the limitation of this study.

  • PDF

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Probabilistic Background Subtraction in a Video-based Recognition System

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.782-804
    • /
    • 2011
  • In video-based recognition systems, stationary cameras are used to monitor an area of interest. These systems focus on a segmentation of the foreground in the video stream and the recognition of the events occurring in that area. The usual approach to discriminating the foreground from the video sequence is background subtraction. This paper presents a novel background subtraction method based on a probabilistic approach. We represent the posterior probability of the foreground based on the current image and all past images and derive an updated method. Furthermore, we present an efficient fusion method for the color and edge information in order to overcome the difficulties of existing background subtraction methods that use only color information. The suggested method is applied to synthetic data and real video streams, and its robust performance is demonstrated through experimentation.

Foreground Motion Tracking and Compression/Transmission of Based Dynamic Mosaic (동적 모자이크 기반의 전경 움직임 추적 및 압축전송)

  • 박동진;윤인모;김찬수;현웅근;김남호;정영기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.741-744
    • /
    • 2003
  • in this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate perspective projection parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region.

  • PDF

Multi-Person Tracking Using SURF and Background Subtraction for Surveillance

  • Yu, Juhee;Lee, Kyoung-Mi
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.344-358
    • /
    • 2019
  • Surveillance cameras have installed in many places because security and safety is becoming important in modern society. Through surveillance cameras installed, we can deal with troubles and prevent accidents. However, watching surveillance videos and judging the accidental situations is very labor-intensive. So now, the need for research to analyze surveillance videos is growing. This study proposes an algorithm to track multiple persons using SURF and background subtraction. While the SURF algorithm, as a person-tracking algorithm, is robust to scaling, rotating and different viewpoints, SURF makes tracking errors with sudden changes in videos. To resolve such tracking errors, we combined SURF with a background subtraction algorithm and showed that the proposed approach increased the tracking accuracy. In addition, the background subtraction algorithm can detect persons in videos, and SURF can initialize tracking targets with these detected persons, and thus the proposed algorithm can automatically detect the enter/exit of persons.

An Efficient Background Modeling and Correction Method for EDXRF Spectra (EDXRF 스펙트럼을 위한 효율적인 배경 모델링과 보정 방법)

  • Park, Dong Sun;Jagadeesan, Sukanya;Jin, Moonyong;Yoon, Sook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.238-244
    • /
    • 2013
  • In energy dispersive X-ray fluorescence analysis, the removal of the continuum on which the X-ray spectrum is superimposed is one of the most important processes, since it has a strong influence on the analysis result. The existing methods which have been used for it usually require tight constraints or prior information on the continuum. In this paper, an efficient background correction method is proposed for Energy Dispersive X-ray fluorescence (EDXRF) spectra. The proposed method has two steps of background modeling and background correction. It is based on the basic concept which differentiates background areas from the peak areas in a spectrum and the SNIP algorithm, one of the popular methods for background removal, is used to enhance the performance. After detecting some points which belong to the background from a spectrum, its background is modeled by a curve fitting method based on them. And then the obtained background model is subtracted from the raw spectrum. The method has been shown to give better results than some of traditional methods, while working under relatively weak constraints or prior information.