Journal of the Korean Institute of Intelligent Systems
/
v.23
no.2
/
pp.139-143
/
2013
The basic idea of conventional thresholding is that an image consists of objects and their background where the gray levels of the objects are different from those of the background. In this paper, we extend it to one where an image consists of not only objects and the background but also their edges. Based on this extension, we propose an edge detection-based thresholding method. The effectiveness of the proposed method is demonstrated by experimental results tested on six well-known test images and compared with conventional methods.
Journal of the Korean Institute of Telematics and Electronics B
/
v.28B
no.10
/
pp.842-913
/
1991
The automatic target detection which automatically identifies the location of the target with its input image is one of the significant subjects of image processing field. Then, there are some problems that should be solved to detect the target automatically from the input image. First of all, the ambiguity of the boundary between targets or between a target and background should be solved and the target should be searched adaptively. In other words, the target should be identified by the relative brightness to the background, not by the absolute brightness. In this paper, to solve these problems, a new algorithm which can identify the target automatically is proposed. This algorithm uses the set of fuzzy for solving the ambiguity between the boundaries, and using the weight according to the brightness of data in the input image, the target is identified adaptively by the relative brightness to the background. Applying this algorithm to real images, it is experimentally proved that it is can be effectively applied to the automatic target detection.
Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.
In this paper, we propose a new stereoscopic video conversion methodology that converts two-dimensional (2-D) MPEG-4 video to stereoscopic video. In MPEG-4, each Image is composed of background object and primary object. In the first step of the conversion methodology, the camera motion type is determined for stereo Image generation. In the second step, the object-based stereo image generation is carried out. The background object makes use of a current image and a delayed image for its stereo image generation. On the other hand, the primary object uses a current image and its horizontally-shifted version to avoid the possible vertical parallax that could happen. Furthermore, URFA(Uncovered Region Filling Algorithm) is applied in the uncovered region which might be created after the stereo image generation of a primary object. In our experiment, show MPEG-4 test video and its stereoscopic video based upon out proposed methodology and analyze Its results.
We propose a method to compose a foreground object into a background image, where the foreground object is a part (or a region) of an image taken by a front-facing camera and the background image is a whole image taken by a back-facing camera in a smart phone at the same time. Recent high-end cell-phones have two cameras and provide users with preview video before taking photos. We extract the foreground object that is moving along with the front-facing camera using the optical flow during the preview. We compose the extracted foreground object into a background image using a simple image composition technique. For better-looking result in the composed image, we apply a border smoothing technique using a weighted-border mask to blend transparency from background to foreground. Since constructing and grouping pixel-level dense optical flow are quite slow even in high-end cell-phones, we compute a mask to extract the foreground object in low-resolution image, which reduces the computational cost greatly. Experimental result shows the effectiveness of our extraction and composition techniques, with much less computational time in extracting the foreground object and better composition quality compared with Poisson image editing technique which is widely used in image composition. The proposed method can improve limitedly the color bleeding artifacts observed in Poisson image editing using weighted-border blending.
Journal of the Korea Society of Computer and Information
/
v.20
no.7
/
pp.17-24
/
2015
In this paper, we propose a method to solve ghosting problem. To generate adaptive background, using an exponentially decreasing number of frames, may improve object detection performance. To extract moving objects from the background by using a differential image, detection error may be caused by object rotations or environmental changes. A ghosting problem can be issue-driven when there are outdoor environmental changes and moving objects. We studied that a differential image by adaptive background may reduce the ghosting problem. In experimental results, we test that our method can solve the ghosting problem.
Journal of Korea Society of Digital Industry and Information Management
/
v.13
no.4
/
pp.71-79
/
2017
Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.
Journal of the Korean Society of Clothing and Textiles
/
v.27
no.7
/
pp.851-861
/
2003
The objectives of this study were to investigate the effect of perceiver's fashion involvement, clothing color, and background of object person on image perceptions of clothing, and to examine how clothing color preference vary according to perceiver's fashion involvement. Subjects were 273 college women in the metropolitan area of Seoul. The T-shirt was changed into 11 colors by using the CAD system. Five factors were derived to account for the dimensions of image perception. These were individuality, elegance, femininity, activity, and neatness. Perceiver's fashion involvement gave a significant influence on perception of individuality. Clothing color gave significant influences on 5 image dimensions. White and beige were evaluated neat image. Neatness factor had an interaction effect by fashion involvement and clothing color. The high involvement group evaluated white and beige shirt more neatly, and orange and yellow less neatly than the low involvement group. Individuality and elegance had an interaction effect by fashion involvement and background of object person. The high involvement group liked red, violet, and black shirt more than the low involvement. Refined and becomingness image gave significant influences on clothing color preference in both high and low involvement groups.
The purpose of this study was to investigate emotional images and preference of knitwear by tone on tone combination. The subjects were 357 university students in Daejeon and Chungnam province, and the measuring instruments were 6 stimuli manipulated by color and tone combination type of background and pattern in the tone and tone combination, and self-administrated questionnaires consisted of emotional images items, preference items, and subjects' demographics attributions. The data were analyzed by Cronbach's ${\alpha}$, factor analysis, t-test, MANOVA and Duncan's multiple range test, using SPSS program. The results were as follows. First, four factors (attractiveness, conspicuity, mildness, and activity) are emerged on emotional images of knitwear. Second, color had main effects on emotional images and preference. Gray color was perceived as most attractive image and more preferred than others. Third, tone combination type had some effects on emotional images. Vivid tone background/light tone pattern was perceived more attractive image but less conspicuous and mild than light tone background/vivid tone pattern. Forth, subjects' gender had an effects on conspicuous image. Male was perceived more conspicuous image on knitwear stimuli than female. Fifth, color and subjects' gender had interaction effects on attractiveness image and preference. Male perceived that blue is more attractive and preferred than female.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.1
/
pp.16-25
/
2020
Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.