• Title/Summary/Keyword: background image

Search Result 2,217, Processing Time 0.034 seconds

STD Defect Detection Algorithm by Using Cumulative Histogram in TFT-LCD Image (TFT-LCD 영상에서 누적히스토그램을 이용한 STD 결함검출 알고리즘)

  • Lee, SeungMin;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1288-1296
    • /
    • 2016
  • The reliable detection of the limited defect in TFT-LCD images is difficult due to the small intensity difference with the background. However, the proposed detection method reliably detects the limited defect by enhancing the TFT-LCD image based on the cumulative histogram and then detecting the defect through the mean and standard deviation of the enhanced image. Notably, an image enhancement using a cumulative histogram increases the intensity contrast between the background and the limited defect, which then allows defects to be detected by using the mean and standard deviation of the enhanced image. Furthermore, through the comparison with the histogram equalization, we confirm that the proposed algorithm suppresses the emphasis of the noise. Experimental comparative results using real TFT-LCD images and pseudo images show that the proposed method detects the limited defect more reliably than conventional methods.

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Comparison of Two Methods for Stationary Incident Detection Based on Background Image

  • Ghimire, Deepak;Lee, Joonwhoan
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • In general, background subtraction based methods are used to detect the moving objects in visual tracking applications. In this paper we employed background subtraction based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection and we compare those in terms of detection performance and computational complexity. In the first approach we used single background and in the second approach we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped object. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short time fully occlusion and illumination changes, as well as it can operate in real time.

  • PDF

Implementation of Effective Automatic Foreground Motion Detection Using Color Information

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.131-140
    • /
    • 2017
  • As video equipments such as CCTV are used for various purposes in fields of society, digital video data processing technology such as automatic motion detection is essential. In this paper, we proposed and implemented a more stable and accurate motion detection system based on background subtraction technique. We could improve the accuracy and stability of motion detection over existing methods by efficiently processing color information of digital image data. We divided the procedure of color information processing into each components of color information : brightness component, color component of color information and merge them. We can process each component's characteristics with maximum consideration. Our color information processing provides more efficient color information in motion detection than the existing methods. We improved the success rate of motion detection by our background update process that analyzed the characteristics of the moving background in the natural environment and reflected it to the background image.

Flaw Detection in Ceramics using Hough transform and Least squares

  • Hong, Dong-Jin;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly show gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares are then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.

Close Surface Targets Detection using Background Removal Integral Projection in Coastal Environment (배경제거 가산투영 방법을 이용한 근거리 해상 표적 탐지)

  • Lee, Boohwan;Kim, Jieun;Yang, Yu Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.115-121
    • /
    • 2014
  • In this paper, we propose a robust background removal integral projection(BRIP) method which can detect close surface targets in coastal environment for IRST. Row pixels of background region from coastal infrared image show similar response. Thus, the proposed BRIP is calculated after horizontal and vertical background estimations and removals are performed sequentially. Finally, surface large targets can be detected using the results of the BRIP. Experimental results on a set of real infrared image sequence show that the proposed method could fully detect ships in every frame.

Multi-Small Target Tracking Algorithm in Infrared Image Sequences (적외선 연속 영상에서 다중 소형 표적 추적 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.

Effects of Color and Size of Motif on Image Perception of Paisley Patterns

  • Kim, Dong-Eun;Martin, Kathi
    • International Journal of Human Ecology
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Two elements of paisley textile design (color and size of motif) were manipulated to investigate their effects on people's perception. Korean and Caucasian American women were selected to represent Asian and Western countries to compare the differences in image perceptions of paisley patterns between two cultures. The participants were 168 female university students composed of 84 Caucasian Americans and 84 Koreans. The experimental design was a $2{\times}2{\times}7$ factorial design: two levels of perceiver's culture, two levels of motif size, and seven levels of the motif color. The four factors used to account for image perception were an elegance factor, individuality factor, maturity factor, and femininity factor. The results of the present study confirm that image perception can be different according to the color and size of a motif and the perceiver's culture. In the results, Americans perceived the paisley pattern as more preferable than Koreans did. Red background + Orange motif was perceived as the most feminine and Dark blue background + Sky blue motif and Dark gray background + Gray motif was perceived as the most masculine in both cultures. Compared to the big motif, the small motif was perceived as more elegant in both cultures.

SOM Matting for Alpha Estimation of Object in a Digital Image (디지털 영상 객체의 불투명도 추정을 위한 SOM Matting)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1981-1986
    • /
    • 2009
  • This paper presents new matting techniques. The matting is an alpha estimation technique of object in an image. We can extract the object in an image naturally using the matting technique. The proposed algorithms begin by segmenting an image into three regions: definitely foreground, definitely background, and unknown. Then we estimate foreground, background, and alpha for all pixels in the unknown region. The proposed algorithms learn the definitely foreground and definitely background using self-organizing map(SOM), and estimate an alpha value of each pixel in the unknown region using SOM learning result. SOM matting is distinguished between global SOM matting and local SOM matting by learning method. Experiment results show the proposed algorithms can extract the object in an image.

Content-based Image Retrieval using LBP and HSV Color Histogram (LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색)

  • Lee, Kwon;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this paper, we proposed a content-based image retrieval algorithm using local binary patterns and HSV color histogram. Images are retrieved using image input in image retrieval system. Many researches are based on global feature distribution such as color, texture and shape. These techniques decrease the retrieval performance in images which contained background the large amount of image. To overcome this drawback, the proposed method extract background fast and emphasize the feature of object by shrinking the background. The proposed method uses HSV color histogram and Local Binary Patterns. We also extract the Local Binary Patterns in quantized Hue domain. Experimental results show that the proposed method 82% precision using Corel 1000 database.