• Title/Summary/Keyword: back-propagation neural network

Search Result 1,073, Processing Time 0.032 seconds

Design of Neural-Network Based Autopilot Control System(II) (신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II))

  • Kwak, Moon Kyu;Suh, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.19-26
    • /
    • 1997
  • This paper is concerned with the design of neural-network based autopilot control system. The back-propagation neural network introduced in the previous paper by authors is applied to the autopilot control system. As a result, two neural-network controllers are developed, which are the model reference adaptive neural controller and the instantaneous optimal neural controller. The model reference adaptive neural controller is the control technique that the heading angle and angular velocity are controlled by the rudder angle to follow the output of the reference model. The instantaneous optimal neural controller optimizes the transition from one state to the next state. These control techniques are applied to a simple ship maneuvering model and their effectiveness is proved by numerical examples.

  • PDF

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF

A Simple Approach of Improving Back-Propagation Algorithm

  • Zhu, H.;Eguchi, K.;Tabata, T.;Sun, N.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1041-1044
    • /
    • 2000
  • The enhancement to the back-propagation algorithm presented in this paper has resulted from the need to extract sparsely connected networks from networks employing product terms. The enhancement works in conjunction with the back-propagation weight update process, so that the actions of weight zeroing and weight stimulation enhance each other. It is shown that the error measure, can also be interpreted as rate of weight change (as opposed to ${\Delta}W_{ij}$), and consequently used to determine when weights have reached a stable state. Weights judged to be stable are then compared to a zero weight threshold. Should they fall below this threshold, then the weight in question is zeroed. Simulation of such a system is shown to return improved learning rates and reduce network connection requirements, with respect to the optimal network solution, trained using the normal back-propagation algorithm for Multi-Layer Perceptron (MLP), Higher Order Neural Network (HONN) and Sigma-Pi networks.

  • PDF

Monitoring of Wafer Dicing State by Using Back Propagation Algorithm (역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF

Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method (Back-Propagation방법의 수렴속도 및 학습정확도의 개선)

  • 이윤섭;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

Injection Mold Cooling Circuit Optimization by Back-Propagation Algorithm (오류역전파 알고리즘을 이용한 사출성형 금형 냉각회로 최적화)

  • Rhee, B.O.;Tae, J.S.;Choi, J.H.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.430-435
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. The cooling circuit optimization problem that was once solved by a response surface method with 4 design variables. It took too much time for the optimization as an industrial design tool. It is desirable to reduce the optimization time. Therefore, we tried the back-propagation algorithm of artificial neural network(BPN) to find an optimum solution in the cooling circuit design in this research. We tried various ways to select training points for the BPN. The same optimum solution was obtained by applying the BPN with reduced number of training points by the fractional factorial design.

  • PDF

Iris Recognition using Multi-Resolution Frequency Analysis and Levenberg-Marquardt Back-Propagation

  • Jeong Yu-Jeong;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • In this paper, we suggest an Iris recognition system with an excellent recognition rate and confidence as an alternative biometric recognition technique that solves the limit in an existing individual discrimination. For its implementation, we extracted coefficients feature values with the wavelet transformation mainly used in the signal processing, and we used neural network to see a recognition rate. However, Scale Conjugate Gradient of nonlinear optimum method mainly used in neural network is not suitable to solve the optimum problem for its slow velocity of convergence. So we intended to enhance the recognition rate by using Levenberg-Marquardt Back-propagation which supplements existing Scale Conjugate Gradient for an implementation of the iris recognition system. We improved convergence velocity, efficiency, and stability by changing properly the size according to both convergence rate of solution and variation rate of variable vector with the implementation of an applied algorithm.

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

A hardware implementation of neural network with modified HANNIBAL architecture (수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현)

  • 이범엽;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.