• 제목/요약/키워드: back-propagation neural network

검색결과 1,073건 처리시간 0.028초

신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구 (A Study on Distance Relay of Transmission UPFC Using Artificial Neural Network)

  • 이준경;박정호;이승혁;김진오
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.37-44
    • /
    • 2004
  • 전력계통분야의 복합 대형화에 유연한 대처와 전력조류의 최적화 도모를 위해 사용되는 FACTS(Flexible AC Transmission System)기기 중 가장 유용한 UPFC(Unified Power Flow Controller)는 선로의 전압을 임의의 크기와 위상을 갖도록 제어하여 선로로 전송되는 유ㆍ무효전력을 총체적으로 보상하는 기능을 갖는다. 이런 UPEC가 계통에 연계되어 운영된다면 송전선로 매개변수가 변하기 때문에 계통의 영향을 많이 받는 거리계전기는 불필요한 오동작이 발생하게 된다. 즉 거리계전기에서 바라본 임피던스 영역(Impedance Zone)이 송전선로에 UPFC 연계시 각각의 보상 값에 의해 상당한 변화를 보임으로, 기존의 방식으로 정정된 Relay Setting Zone과 Adaptive Setting Zone은 현저한 오차가 발생하게 된다. 그러므로 계통에 연계된 UPFC의 운전 조건을 고려한 거리계전기 보호구간의 재설정이 필요하게 된다. 따라서 본 논문의 목적은 학습이 가능한 신경회로망(ANN)을 이용하여 거리계전기 동작의 신속성(Speed)을 기본으로 전력계통의 다양한 환경에 대해 거리계전기 응동 특성을 향상시키는데 있다. 학습 방법으로는 정적 및 동적인 비선형 시스템의 인식과 다변수 시스템에 적용 가능한 역전파 알고리즘(Back-propagation Algorithm)을 사용했다.

인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가 (Application Assessment of water level prediction using Artificial Neural Network in Geum river basin)

  • 유완식;김선민;김연수;황의호;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

R의 neuralnet을 활용한 신경망분석 (Neural network analysis using neuralnet in R)

  • 백재욱
    • 산업진흥연구
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 연구는 다층 퍼셉트론과 지도형 학습알고리즘에 대해 알아보았고, 아울러 neuralnet이라는 패키지를 사용하여 공변수들과 반응변수 간의 함수적 관계를 어떻게 모델링하는지 살펴보았다. 본 연구에서 적용된 알고리즘은 반응변수 값의 실제치와 예측치 간의 비교에 근거한 오차함수의 최소화를 위한 모수인 가중치들의 계속적인 조정을 특징으로 한다. 본 연구에서 설명하는 neuralnet 패키지는 활성화함수와 오차함수를 주어진 상황에 맞게 적절히 선택하고 나머지 매개변수들은 기본값으로 둘 수 있다. 본 연구에서 살펴본 불임 데이터에 대해 neuralnet 패키지를 활용한 결과 4개의 독립변수 중에서 age는 불임에 영향력이 거의 없음을 파악할 수 있었다. 아울러 신경망의 가중치는 -751.6부터 7.25에 이르기까지 다양한 값을 취하며, 첫 번째 은닉층의 절편은 -92.6과 7.25이며, 첫 번째 은닉뉴런으로 가는 공변수 age, parity, induced, spontaneous에 대한 가중치는 각각 3.17, -5.20, -36.82, -751.6임을 파악했다.

인공신경망을 이용한 N치 예측 (A Prediction of N-value Using Artificial Neural Network)

  • 김광명;박형준;구태훈;김형찬
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.457-468
    • /
    • 2020
  • 플랜트, 토목 및 건축 사업에서 말뚝(Pile) 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험(Standard Penetration Test, SPT)을 통해 측정되는 N치를 얻는 것이 가장 중요한 자료이나 광범위한 모든 지역에서 구하는 것은 어려운 현실이다. 짧은 해외사업 입찰기간 내에 시추조사를 할 경우 인허가, 시간, 비용, 장비접근, 민원 등 많은 제약요건이 존재하여 전체적인 시추조사가 어렵다. 미시추 지점에서 지반 특성은 엔지니어의 경험적 판단에 의존하여 파악되고 있고, 이는 말뚝의 설계 및 물량산출 오류로 이어져서, 공기 지연 및 원가 증가의 원인이 되고 있다. 이를 극복하기 위해서, 한정된 최소한의 지반 실측 자료를 활용하여 미시추 지점에서도 N치를 예측 할 수 있는 기술이 요구되며, 본 연구에서는 AI기법 중 하나인 인공신경망을 적용하여 N치를 예측하는 연구를 수행하였다. 인공신경망은 제한된 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성 있는 결과를 제공하여 준다. 본 연구에서는 최소한의 시추자료의 지반정보를 입력항목으로 하여 다층퍼셉트론과 오류역전파 알고리즘에 의하여 학습된 패턴을 가지고 미시추 지점에서 N치를 예측하는데 그 목적을 두고 있다. 이를 위하여 2개 현장(필리핀, 인도네시아)에 AI기법 적용시 실측값과 예측값에 대한 적정성을 검토하였고, 그 결과 예측값에 대한 신뢰도가 높은 것으로 연구 검토되었다.

Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류 (Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network)

  • 이태주;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

문자인식을 위한 로버스트 역전파 알고리즘 (A Robust Backpropagation Algorithm and It's Application)

  • 오광식;김상민;이동로
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.163-171
    • /
    • 1997
  • 공학 분야에서 신경망에 대한 관심은 신호처리, 로보틱스, 컨트롤, 문자인식, 패턴인식 그리고 컴퓨터 그래픽 분야등에서 연구되고 있으며, 이들은 함수근사응용과 밀접한 관련이있다. 통계학 분야에서는 패턴인식의 판별분석, 주성분분석, 회귀분석 그리고 군집분석을 위한 신경망등에 대한 연구가 활발히 이루어지고 있다. 문자인식을 위한 다층 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련기간, 극소점 문제, 이상치(outlier)에 민감하다는 단점을 지니고 있다. 이상치에 민감한 일반적인 역전파 알고리즘의 단점을 극복하기 위해 이상치에 민감하지 않은 로버스트 알고리즘의 필요성이 대두되었다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 제안한 로버스트 역전파 알고리즘을 문자인식에 적용하여 일반적인 역전파 알고리즘의 문자인식 성능과 비교하였다.

  • PDF

3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정 (Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets)

  • 도용태;이대식;유석환
    • 센서학회지
    • /
    • 제7권6호
    • /
    • pp.418-425
    • /
    • 1998
  • 로봇을 비롯한 자동화 기계의 3차원 작업에서 스테레오 카메라는 가장 널리 사용되는 센서 장치이다. 스테레오 카메라를 사용함으로써 3차원 실세계 공간내 임의 목표점의 위치를 측정할 수 있으며, 카메라의 보정은 이를 위한 중요한 선행작업이다. 기존의 카메라 보정법은 크게 선형과 비선형의 기법으로 나눌 수 있는데, 선형의 기법은 간단하나 정확도의 면에서 문제점을 지니고, 비선형 기법은 렌즈의 왜곡을 보상하기 위한 모델링 과정과 이의 비선형 해를 구하는 비교적 복잡한 과정을 필요로 한다는 문제가 있다. 본 논문에서는 이러한 문제의 한 해결방안으로 인공신경망을 적용하는 방법을 연구하고 그 결과를 제시한다. 특히 역전파 알고리즘에 의해 학습된 다층 신경망의 함수 근사화 능력을 활용하여 선형기법의 오차 패턴을 학습함으로써 간단하고 효과적으로 계측의 정확도를 향상시킬 수 있음을 실험을 통하여 보인다.

  • PDF

신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구 (Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network)

  • 김미은;신현석
    • 한국수자원학회논문집
    • /
    • 제46권7호
    • /
    • pp.697-706
    • /
    • 2013
  • 최근 한국은 기후변화로 인한 기온 및 수온 상승, 빈번한 집중호우와 친수공간 조성에 따른 적극적인 하천의 활용 등으로 인하여 하천 및 저수지 내 수질관리에 있어 해결해야 하는 많은 문제점을 가지고 있다. 본 연구는 효율적인 수질관리를 위하여 인공신경망을 이용한 단기조류예측모형 구축에 관한 연구이다. 대상지역으로 조류가 번식하기 좋은 조건을 지니고 있는 금강유역 내 대청호를 선정하였고 설치되어 있는 수질 자동측정망의 일 단위자료를 이용하였다. 다층전방향신경망의 역전파 알고리즘을 이용하여 단기(1일, 3일, 7일) 조류를 예측할 수 있는 모형을 구축하였다. 본 모형에서는 대청호 내 수문 및 수질성분을 교차상관분석을 기초하여 단기조류예측모형의 입력 성분을 선정한 후 다양한 조류예측 신경망 모형을 구축하여 결과에 대한 검증을 실시하였다. 구축된 단기조류예측모형은 자연발생적인 기작과 유사한 현상을 재현할 수 있는 다양한 수질인자를 고려하여 단기조류예측모형을 구축한 경우 예측의 정확도가 높게 도출되었다. 본 연구는 신경망모형의 최대 장점인 비선형성 및 간편성 등을 고려하였을 때 우리나라의 수질예측에 적합한 신경망 모형을 구축할 수 있으며 이를 통한 하천 및 호수 내 효율적인 수질관리 방안을 제시할 수 있을 것이다.

인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템 (The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system)

  • 이길재;김창주;안병렬;김문현
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.45-52
    • /
    • 2008
  • 최근 IT 서비스 발달과 함께 고장제어, 고장의 원인분석 등의 복잡한 문제에 대하여 적합한 해결책을 제시할 수 있는 효과적인 진단시스템의 필요성이 커지고 있다. 따라서 본 논문에서는 지능형 진단 시스템분야에서의 시스템의 성능을 향상시키고, 최적의 진단을 수행하고자 사례기반추론과 인공신경망을 혼합한 지능형 진단 시스템을 제안 한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야를 효율적으로 추론할 수 있다. 하지만 사례기반추론만을 이용해 추론된 사례는 증상에 대해 다수의 원인을 추론하게 된다. 이때 추론된 증상에 따른 다수의 원인은 동일한 가중치를 가져 불필요한 원인까지 진단해야 하는 문제점이 있다. 이러한 문제를 해결하고자 인공신경망의 오류역전파 학습 알고리즘을 이용하여 증상에 대한 원인들의 쌍을 학습 시킨 후 각각의 증상에 대한 원인의 가중치를 구해 제시된 증상에 대해 가장 발생 가능성이 높은 원인을 찾아내어, 보다 명확하고 신뢰성 있는 진단을 하는 데 그 목적이 있다.

A Tolerant Rough Set Approach for Handwritten Numeral Character Classification

  • Kim, Daijin;Kim, Chul-Hyun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.288-295
    • /
    • 1998
  • This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.

  • PDF