• Title/Summary/Keyword: back-propagation learning algorithm

Search Result 386, Processing Time 0.023 seconds

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

Adaptive Learning Rate and Limited Error Signal to Reduce the Sensitivity of Error Back-Propagation Algorithm on the n-th Order Cross-Entropy Error (오류 역전파 알고리즘의 n차 크로스-엔트로피 오차신호에 대한 민감성 제거를 위한 가변 학습률 및 제한된 오차신호)

  • 오상훈;이수영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.67-75
    • /
    • 1998
  • Although the nCE(n-th order cross-entropy) error function resolves the incorrect saturation problem of conventional EBP(error back-propagation) algorithm, the performance of MLP's (multilayer perceptrons) trained using the nCE function depends heavily on the order of the nCE function. In this paper, we propose an adaptive learning rate to make the performance of MLP's insensitive to the order of the nCE error. Additionally, we propose a limited error signal of output node to prevent unstable learning due to the adaptive learning rate. The effectiveness of the proposed method is demonstrated in simulations of handwritten digit recognition and thyroid diagnosis tasks.

  • PDF

Back-propagation Algorithm with a zero compensated Sigmoid-prime function (영점 보상 Sigmoid-prime 함수에 의한 역전파 알고리즘)

  • 이왕국;김정엽;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.115-122
    • /
    • 1994
  • The problems in back-propagation(BP) generally are learning speed and misclassification due to lacal minimum. In this paper, to solve these problems, the classical modified methods of BP are reviewed and an extension of the BP to compensate the sigmoide-prime function around the extremity where the actual output of a unit is close to zero or one is proposed. The proposed method is not onlu faster than the conventional methods in learning speed but has an advantage of setting variables easily because it shows good classification results over the vast and uncharted space about the variations of learning rate, etc.. And it is simple for hardware implementation.

  • PDF

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

Modified elman neural network structure for nonlinear system identification (비선형 시스템 식별을 위한 수정된 elman 신경회로망 구조)

  • 정경권;권성훈;이인재;이정훈;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.917-920
    • /
    • 1998
  • In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.

  • PDF

(The Development of Janggi Board Game Using Backpropagation Neural Network and Q Learning Algorithm) (역전파 신경회로망과 Q학습을 이용한 장기보드게임 개발)

  • 황상문;박인규;백덕수;진달복
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • This paper proposed the strategy learning method by means of the fusion of Back-Propagation neural network and Q learning algorithm for two-person, deterministic janggi board game. The learning process is accomplished simply through the playing each other. The system consists of two parts of move generator and search kernel. The one consists of move generator generating the moves on the board, the other consists of back-propagation and Q learning plus $\alpha$$\beta$ search algorithm in an attempt to learn the evaluation function. while temporal difference learns the discrepancy between the adjacent rewards, Q learning acquires the optimal policies even when there is no prior knowledge of effects of its moves on the environment through the learning of the evaluation function for the augmented rewards. Depended on the evaluation function through lots of games through the learning procedure it proved that the percentage won is linearly proportional to the portion of learning in general.

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Adaptive Control of Non-linear Dynamic System using Neural Network (신경 회로망을 이용한 비선형 동적 시스템의 적응 제어)

  • Jang, Seong-Whan;Cho, Hyeon-Seob;Kim, Ki-Cheol;Choi, Bong-Shik;Yu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.953-955
    • /
    • 1995
  • Studied on identification of nonlinear system with unknown variables and adaptive control were successful. We need a mathmatical model when control a dynamic system using adaptive control technique, but it is very difficult due to its nonlinearity. In this paper, we described about performance improvement of error back-propagation algorithm and learning algorithm of non-linear dynamic system. We examined the proposed back-propagation learn algorithm for through an experiment.

  • PDF

A hardware implementation of neural network with modified HANNIBAL architecture (수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현)

  • 이범엽;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF