• Title/Summary/Keyword: back-projection method

Search Result 107, Processing Time 0.034 seconds

CT Reconstruction using Discrete Cosine Transform with non-zero DC Components (영이 아닌 DC값을 가지는 Discrete Cosine Transform을 이용한 CT Reconstruction)

  • Park, Do-Young;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1001-1007
    • /
    • 2014
  • This paper proposes a method to reduce operation time using discrete cosine transform and to improve image quality by the DC gain correction. Conventional filtered back projection (FBP) filtering in the frequency domain using Fourier transform, but the filtering process uses complex number operations. To simplify the filtering process, we propose a filtering process using discrete cosine transform. In addition, the image quality of reconstructed images are improved by correcting DC gain of sinograms. To correct the DC gain, we propose to find an optimum DC weight is defined as the ratio of sinogram DC and optimum DC. Experimental results show that the proposed method gets better performance than the conventional method for phantom and clinical CT images.

Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement (Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상)

  • Jang, Hyo-Sik;Kim, Duk-Gyoo;Jung, Yoon-Soo;Lee, Tae-Gyoun;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

Video Object Extraction Using Contour Information (윤곽선 정보를 이용한 동영상에서의 객체 추출)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • In this paper, we present a method for extracting video objects efficiently by using the modified graph cut algorithm based on contour information. First, we extract objects at the first frame by an automatic object extraction algorithm or the user interaction. To estimate the objects' contours at the current frame, motion information of objects' contour in the previous frame is analyzed. Block-based histogram back-projection is conducted along the estimated contour point. Each color model of objects and background can be generated from back-projection images. The probabilities of links between neighboring pixels are decided by the logarithmic based distance transform map obtained from the estimated contour image. Energy of the graph is defined by predefined color models and logarithmic distance transform map. Finally, the object is extracted by minimizing the energy. Experimental results of various test images show that our algorithm works more accurately than other methods.

An Image Improvement for Microwave Diffraction Tomography under the Born Approximation Based on the Projection Function (Born 근사하에 투영함수를 이용한 초고주파 회절단층촬영의 영상개선)

  • 서경환;김상기;라정웅;김세윤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.1-7
    • /
    • 1992
  • A consideration for image improvement under the Born approximation in the microwave diffraction tomography is suggested by using a projection function. The limiting factors in the degrading reconstructed image due to Born approximation are identified in terms of projection function and its modification is suggested to improve the degraded image based upon the Born approximation. In order to verify the proposed method, the reconstructed images are shown by computer simulation from the back-scattered data of angular and frequency diversity for squared dielectric cylinder with a various relative dielectric constant. From simulation results, it was shown that the proposed method can lead to a fairly good improved image for a severe degraded one irrespective of homogeneous and inhomogeneous dielectric object. In the future, the analysis on the limitation of this method should be considered and performed by means of more quantitative method.

  • PDF

The Correcting Algorithm on Geometric Distortion of Polar Format Algorithm (PFA의 기하 왜곡 보정 기법)

  • Lee, Hankil;Kim, Donghwan;Son, Inhye
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Polar fomat algorithm (PFA) was derived from medical imaging theory, known as back projection, to process synthetic aperture radar(SAR) data. The difference between the operating condition of SAR and back projection assumption makes two distortions. First, the focusing performance of PFA is degraded in proportion to distances from the scene center. Second, the geometric accuracy in SAR images is distorted. Several methods were introduced to mitigate the distortions, but some disadvantages, such as the geometric discontinuity, are arisen when sub-images are combined. This paper proposes the novel method to compensate the geometric distortion with chirp Z-transform (CZT). This method corrects precisely the geometric errors without any problems, because a whole image can be processed all at once.

Feature Extraction of Handwritten Numerals using Projection Runlength (Projection Runlength를 이용한 필기체 숫자의 특징추출)

  • Park, Joong-Jo;Jung, Soon-Won;Park, Young-Hwan;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.818-823
    • /
    • 2008
  • In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

Granular noise analysis in pixel-to-pixel mapping-based computational integral imaging (화소 대 화소 매핑 기반 컴퓨터 집적 영상에서의 그래눌라 잡음 해석)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1363-1368
    • /
    • 2011
  • This paper describes an analysis on the granular noise in pixel-to-pixel mapping-based computational integral imaging. The pixel mapping-based method provides a high-resolution reconstructed images and also its computational cost is very lower than the previous back-projection-based method. In this paper, a signal model for the pixel mapping-based method is introduced, which defines and analyzes the granular noise. Computer experiments provides the granular noise properties based on the proposed signal model. The experimental results indicates that the granular noise pattern differs from that of the back-projection based method. The results is also utilized in the pixel mapping-based method.

Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction (피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The object tracking method using particle filtering has been proved successful since it is based on the Monte Carlo simulation to estimate the posterior distribution of the state vector that is nonlinear and non-Gaussian in the real-world situation. In this paper, we present two nobel methods that can improve the performance of the object tracking algorithm based on the particle filtering. First one is the feedback method that replace the low-weighted tracking sample by the estimated state vector in the previous frame. The second one is an tracking box correction method to find an confidence interval of back projection probability on the estimated candidate object area. An sample propagation equation is also presented, which is obtained by experiments. We designed well-organized test data set which reflects various challenging circumstances, and, by using it, experimental results proved that the proposed methods improves the traditional particle filter based object tracking method.

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.