In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.
The Transactions of the Korea Information Processing Society
/
v.5
no.11
/
pp.3010-3023
/
1998
GA has a fast convergence speed in searching the one point around optimal value. But it's convergence time increase in searching the region around optimal value because it has no regional searching mechanism. BP has the tendency to converge the local minimum because it has global searching mechanism. To overcome these problems, a method in which a genetic algorithm and a back propagation are applied in turn is proposed in this paper. By using a genetic algorithm, we compute optimal synaptic strength and offset value. And then, these values are fed to the input of the back propagation. This proposed method is superior to each above method in improving the convergence speed.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.113-117
/
1998
We propose a way to show the inherent learning complexity for the multilayer perceptron. We display the solution space and the error surfaces on the input space of a single neuron with two inputs. The evolution of its weights will follow one of the two error surfaces. We observe that when we use the back-propagation(BP) learning algorithm (1), the wight cam not jump to the lower error surface due to the implicit continuity constraint on the changes of weight. The self-relaxation approach is to explicity find out the best combination of all neurons' two error surfaces. The time complexity of training a multilayer perceptron by self-relaxationis exponential to the number of neurons.
International Journal of Aeronautical and Space Sciences
/
v.17
no.4
/
pp.491-500
/
2016
This paper presents a highly efficient aeroelastic optimization method based on a surrogate model; the model is verified by considering the case of a high-aspect-ratio composite wing. Optimization frameworks using the Kriging model and genetic algorithm (GA), the Kriging model and improved particle swarm optimization (IPSO), and the back propagation neural network model (BP) and IPSO are presented. The feasibility of the method is verified, as the model can improve the optimization efficiency while also satisfying the engineering requirements. Moreover, the effects of the number of design variables and number of constraints on the optimization efficiency and objective function are analysed in detail. The accuracy of two surrogate models in aeroelastic optimization is also compared. The Kriging model is constructed more conveniently, and its predictive accuracy of the aeroelastic responses also satisfies the engineering requirements. According to the case of a high-aspect-ratio composite wing, the GA is better at global optimization.
A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.
Conventional gain-tuning methods such as Ziegler-Nickels methods, have many disadvantages that optimal control ler gain should be tuned manually. In this paper, modified PID controllers which include self-tuning characteristics are proposed. Proposed controllers automatically tune the PID gains in on-1ine using neural networks. A new learning scheme was proposed for improving learning speed in neural networks and satisfying the real time condition. In this paper, using a nonlinear mapping capability of neural networks, we derive a tuning method of PID controller based on a Back propagation(BP)method of multilayered neural networks. Simulated and experimental results show that the proposed method can give the appropriate parameters of PID controller when it is implemented to DC Motor.
International Journal of Reliability and Applications
/
v.10
no.1
/
pp.1-15
/
2009
Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.
This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.
THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.816-819
/
2005
This paper proposes a coordinate correction technique using the transformation of 3D parabolic coordinate function and BP(Back Propagation) neural network in order to solve space distortion problem caused by using catadioptric camera. Although Catadioptric camera can obtain omni-directional image at all directions of 360 degrees, it makes an image distorted because of an external form of lens itself. Accordingly, To obtain transformed ideal distance coordinate information from distorted image on 3 dimensional space, we use coordinate transformation function that uses coordinates of a focus at mirror in the shape of parabolic plane and another one which projected into the shape of parabolic from input image. An error of this course is modified by BP neural network algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.