• 제목/요약/키워드: back propagation (BP)

Search Result 154, Processing Time 0.027 seconds

Design of a systolic array for forward-backward propagation of back-propagation algorithm (역전파 알고리즘의 전방향, 역방향 동시 수행을 위한 스스톨릭 배열의 설계)

  • 장명숙;유기영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.49-61
    • /
    • 1996
  • Back-propagation(BP) algorithm needs a lot of time to train the artificial neural network (ANN) to get high accuracy level in classification tasks. So there have been extensive researches to process back-propagation algorithm on parallel processors. This paper prsents a linear systolic array which calculates forward-backward propagation of BP algorithm at the same time using effective space-time transformation and PE structure. First, we analyze data flow of forwared and backward propagations and then, represent the BP algorithm into data dapendency graph (DG) which shows parallelism inherent in the BP algorithm. Next, apply space-time transformation on the DG of ANN is turn with orthogonal direction projection. By doing so, we can get a snakelike systolic array. Also we calculate the interval of input for parallel processing, calculate the indices to make the right datas be used at the right PE when forward and bvackward propagations are processed in the same PE. And then verify the correctness of output when forward and backward propagations are executed at the same time. By doing so, the proposed system maximizes parallelism of BP algorithm, minimizes th enumber of PEs. And it reduces the execution time by 2 times through making idle PEs participate in forward-backward propagation at the same time.

  • PDF

Evaluation for Applications of the Levenberg-Marquardt Algorithm in Geotechnical Engineering (Levenberg-Marquardt 알고리즘의 지반공학 적용성 평가)

  • Kim, Youngsu;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.49-57
    • /
    • 2009
  • In this study, one of the complicated geotechnical problem, compression index was predicted by a artificial neural network method of Levenberg-Marquardt (LM) algorithm. Predicted values were compared and evaluated by the results of the Back Propagation (BP) method, which is used extensively in geotechnical engineering. Also two different results were compared with experimental values estimated by verified experimental methods in order to evaluate the accuracy of each method. The results from experimental method generally showed higher error than the results of both artificial neural network method. The predicted compression index by LM algorithm showed better comprehensive results than BP algorithm in terms of convergence, but accuracy was similar each other.

  • PDF

Edge detection method using unbalanced mutation operator in noise image (잡음 영상에서 불균등 돌연변이 연산자를 이용한 효율적 에지 검출)

  • Kim, Su-Jung;Lim, Hee-Kyoung;Seo, Yo-Han;Jung, Chai-Yeoung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.673-680
    • /
    • 2002
  • This paper proposes a method for detecting edge using an evolutionary programming and a momentum back-propagation algorithm. The evolutionary programming does not perform crossover operation as to consider reduction of capability of algorithm and calculation cost, but uses selection operator and mutation operator. The momentum back-propagation algorithm uses assistant to weight of learning step when weight is changed at learning step. Because learning rate o is settled as less in last back-propagation algorithm the momentum back-propagation algorithm discard the problem that learning is slow as relative reduction because change rate of weight at each learning step. The method using EP-MBP is batter than GA-BP method in both learning time and detection rate and showed the decreasing learning time and effective edge detection, in consequence.

A Study on Face Recognition using a Hybrid GA-BP Algorithm (혼합된 GA-BP 알고리즘을 이용한 얼굴 인식 연구)

  • Jeon, Ho-Sang;Namgung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.552-557
    • /
    • 2000
  • In the paper, we proposed a face recognition method that uses GA-BP(Genetic Algorithm-Back propagation Network) that optimizes initial parameters such as bias values or weights. Each pixel in the picture is used for input of the neuralnetwork. The initial weights of neural network is consist of fixed-point real values and converted to bit string on purpose of using the individuals that arte expressed in the Genetic Algorithm. For the fitness value, we defined the value that shows the lowest error of neural network, which is evaluated using newly defined adaptive re-learning operator and built the optimized and most advanced neural network. Then we made experiments on the face recognition. In comparison with learning convergence speed, the proposed algorithm shows faster convergence speed than solo executed back propagation algorithm and provides better performance, about 2.9% in proposed method than solo executed back propagation algorithm.

  • PDF

Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method (Back-Propagation방법의 수렴속도 및 학습정확도의 개선)

  • 이윤섭;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

An Implementation and Analysis of the Container Identifier Recognition System using back-propagation algorithm (Back-propagation 알고리즘을 이용한 컨테이너 식별자 인식 시스템의 구현 및 분석)

  • 이만형;황상훈;정신규;황대훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • 오늘날 컨테이너의 과다한 물동량 증가로 인하여 수작업으로 이루어지는 컨테이너 식별자를 처리하는데 어려움을 겪고 있는 가운데, 이를 자동으로 인식하고 그 결과를 항만 물류 처리 자동화 시스템에 적용하고자 하는 필요성이 대두되고 있다. 이에 본 논문에서는 컨테이너의 인식 처리를 자동화하기 위한 방안으로 컨테이너의 식별자 인식에 신경망 알고리즘의 하나인 Back-propagation을 적용하였으며, BP 알고리즘을 적용하기 위해서 적절한 scaling 비율을 구하고, 학습 DB를 구축하여 기존의 식별자 인식보다 신속하고 정확한 처리가 가능하도록 구현하였다.

  • PDF

Implementation of a Portable Electronic Nose System for Field Screening (필드 스크린을 위한 휴대용 전자코 시스템의 구현)

  • Byun, Hyung-Gi;Lee, Jun-Sub;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • There is currently much interest in the development of instruments that emulate the senses of humans. Increasingly, there is demand for mimicking the human sense of smell, which is a sophisticated chemosensory system. An electronic nose system is applicable to a large area of industries including environmental monitoring. We have designed a protable electronic nose system using an array of commercial chemical gas sensors for recognizing and analyzing the various odours. In this paper, we have implemented a portable electronic nose system using an array of gas sensors for recognizing and analyzing VOCs (Volatile Organic Compounds) in the field. The accuracy of a portable electronic nose system may be lower than an instrument such as GC/MS (Gas Chromatography/Mass Spectrometer). However, a portable electronic nose system could be used on the field and showed fast response to pollutants in the field. Several different algorithms for odours recognition were used such as BP (Back-Propagation) or LM-BP (Levenberq-Marquardt Back-Propagation). We applied RBF (Radial Basis Function) Network for recognition and quantifying of odours, which has simpler and faster compared to the previously used algorithms such as BP and LM-BP.

Back-propagation Algorithm with a zero compensated Sigmoid-prime function (영점 보상 Sigmoid-prime 함수에 의한 역전파 알고리즘)

  • 이왕국;김정엽;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.115-122
    • /
    • 1994
  • The problems in back-propagation(BP) generally are learning speed and misclassification due to lacal minimum. In this paper, to solve these problems, the classical modified methods of BP are reviewed and an extension of the BP to compensate the sigmoide-prime function around the extremity where the actual output of a unit is close to zero or one is proposed. The proposed method is not onlu faster than the conventional methods in learning speed but has an advantage of setting variables easily because it shows good classification results over the vast and uncharted space about the variations of learning rate, etc.. And it is simple for hardware implementation.

  • PDF

Adult Image Blocking using Feature Extraction based BP Neural Network (특징 추출 기반 BP 신경망을 이용한 성인 영상 차단)

  • Kim, Jong-Il;Lee, Jung-Suk;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.349-351
    • /
    • 2005
  • 현재 다양한 인터넷 콘텐츠들에 의해 많은 정보가 공유되고 있으며, 유익한 정보들과 더불어 성인물과 같은 유해한 정보들이 있다. 이로 인하여 여러 문제점들이 야기되고 있으며, 이를 해결하기 위해 다양한 방법들이 제안되고 있다. 그 중에서 성인 영상 차단을 위한 연구도 많이 행해지고 있으며 주로 색상을 이용한 방법을 사용하고 있다. 그러나 살색과 유사한 영상이나 노출이 심한 영상에는 성인 영상 검출의 신뢰성이 떨어지는 단점을 갖는다. 본 논문에서는 이런 문제점을 해결하기 위해 새로운 성인 영상 차단 방법을 제안한다. 기존의 제안된 살색 검출을 이용한 방법을 기반으로 성인 영상물로 판정될 수 있는 신체 부위를 검출함으로써 강인한 성인 영상 차단을 한다. 신체 부위에 대한 판별을 위해 여러 기저 영상에서 특징 벡터를 추출하고. 이 벡터를 Back Propagation(BP) 신경망의 데이터로 이용하여 학습한다. 제안한 성인 영상 차단 방법의 성능을 여러 장의 살색과 유사한 색상의 물체 영상과 노출이 심한 영상, 성인 영상을 이용한 종합적인 실험 결과인 성인 영상 검출률을 통해 증명한다.

  • PDF