• Title/Summary/Keyword: back prediction

Search Result 451, Processing Time 0.03 seconds

Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model (이동경화 모델에 기반한 MS1470 강판의 스프링백 예측)

  • Park, S.C.;Park, T.;Koh, Y.;Seok, D.Y.;Kuwabara, T.;Noma, N.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Spring-back of MS1470 steel sheets was numerically predicted using a non-linear kinematic hardening material behavior based on the Yoshida-Uemori model. From uniaxial tension and uniaxial tension-compression-tension data as well as the uniaxial tension-unloading-tension data, the parameters of the Yoshida-Uemori model were obtained. For the numerical simulations, the Yoshida-Uemori model was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. The model performance was validated against the measured spring-back from the benchmark problems of NUMISHEET 2008 and NUMISHEET 2011, the 2-D draw bending test and the S-rail forming test, respectively.

Early Prediction of Carcass Yield Grade by Ultrasound in Hanwoo (초음파를 이용한 한우 육량등급의 조기예측)

  • Rhee, Y. J.;Seok, H. K.;Kim, S. J.;Song, Y. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.327-334
    • /
    • 2003
  • This study was carried out to make early prediction of carcass yield grade. Sixty six Hanwoo steers were measured for back fat thickness, longissimus muscle area and body weight at 18, 21 and 24 months of age by ultrasound. Carcass evaluation was done after ultrasound measurement at 24 month of age. Ultrasonic yield grade at 18, 21 and 24 month of age were predicted by regression and decision tree methods. Classifying by carcass yield grade, ultrasonic back fat thickness at 18, 21 and 24 months of age was significantly different in each carcass yield grade (p<0.05). The prediction accuracy of carcass yield grade by regression method was 78.8% at 18 months, 86.4% at 21 months and 90.9% at 24 months of age. By using the decision tree method for carcass yield grade, 78.8%, 89.4% and 89.4% of prediction accuracy were obtained at 18, 21 and 24 months of age, respectively.

Application of Artificial Neural Network to the Prediction of Pollutant Concentration in Road Tunnels (인공신경망을 이용한 도로터널 오염물질 농도 예측)

  • Lee, Duck-June;Yoo, Yong-Ho;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.434-443
    • /
    • 2003
  • In this study, it was purposed to develop the new method for the prediction of pollutant concentration in road tunnels. The new method was the use of artificial neural network with the back-propagation algorithm which can model the non-linear system of tunnel environment. This network system was separated into two parts as the visibility and the CO concentration. For this study, data was collected from two highway road tunnels on Yeongdong Expressway. The tunnels have two lanes with one-way direction and adopt the longitudinal ventilation system. The actually measured data from the tunnels was used to develop the neural network system for the prediction of pollutant concentration. The output results from the newly developed neural network system were analysed and compared with the calculated values by PIARC method. Results showed that the prediction accuracy by the neural network system was approximately five times better than the one by PIARC method. In addition, the system predicted much more accurately at the situation where the drivers have to be stayed for a while in tunnels caused by the low velocity of vehicles.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method (신경회로망을 이용한 종합주가지수의 변화율 예측)

  • Roh, Jong-Lae;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

Chaotic Time Series Prediction using Extended Fuzzy Entropy Clustering (확장된 퍼지엔트로피 클러스터링을 이용한 카오스 시계열 데이터 예측)

  • 박인규
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.5-8
    • /
    • 2000
  • In this paper, we propose new algorithms for the partition of input space and the generation of fuzzy control rules. The one consists of Shannon and extended fuzzy entropy function, the other consists of adaptive fuzzy neural system with back propagation teaming rule. The focus of this scheme is to realize the optimal fuzzy rule base with the minimal number of the parameters of the rules, reducing the complexity of the system. The proposed algorithm is tested with the time series prediction problem using Mackey-Glass chaotic time series.

  • PDF

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

Financial Data Mining Using Time delay Neural Networks

  • Kim, Hyun-Jung;Shin, Kyung-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.122-127
    • /
    • 2001
  • This study investigates the effectiveness of time delay neural networks(TDNN) for the time dependent prediction domain. Although it is well-known fact that the back-propagation neural network(BPN) performs well in pattern recognition tasks, the method has some limitations in that it can only learn an input mapping of static (or spatial) patterns that are independent of time of sequences. The preliminary results show that the accuracy of TDNN is higher than the standard BPN with time lag. Our proposed approaches are demonstrated by the stork market prediction domain.

  • PDF

Prediction of concrete strength using serial functional network model

  • Rajasekaran, S.;Lee, Seung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.83-99
    • /
    • 2003
  • The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of Concrete Strength by Functional Networks) in order to provide in-place strength information of the concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system is developed using Functional Network (FN) by learning functions instead of weights as in Artificial Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output data and the input for one functional network is the output of the other functional network. Using ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete. Altogether seven functional networks are used for prediction of strength development. This study shows that ISCOSTFUN using functional network is very efficient for predicting the compressive strength development of concrete and it takes less computer time as compared to well known Back Propagation Neural Network (BPN).