• Title/Summary/Keyword: azimuth

Search Result 797, Processing Time 0.025 seconds

Estimation Technique of Direction of Arrival for Location Service in the next Generation Mobile Communication System (차세대 이동통신시스템에서 Location Service를 위한 신호도착방향 추정기법)

  • 이성로;최명수;김철희;안동순;김종화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.284-293
    • /
    • 2003
  • Location service is usually provided by the GPS method using satellites. In the next generation mobile communication systems which use smart antennas, location service can be accomplished using direction of arrival (DOA) estimation techniques. In this paper, we propose a DOA estimation technique for the location service of the next generation mobile communication systems and investigate the validity of the proposed technique through computer simulation. First, DOA estimation problems of distributed sources are considered using vortical and horizontal array processors which are orthogonal to each other. The DOA of the elevation angle is estimated by the vertical array processor and then that of the azimuth angle is estimated by the horizontal array processor. Finally, the procedures of the location service for specific signal sources using three smart antennas are exhibited by computer simulation to show that the proposed DOA estimation technique can be used for the location service in the next generation mobile communication systems.

The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model (태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

The Development of the Solar Tracking System with High Accuracy by using LabVIEW (LabVIEW를 활용한 고정밀도 태양추적장치 개발)

  • Oh, Seung-Jin;Cho, Yil-Sik;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-36
    • /
    • 2009
  • There have been many solar tracking systems developed for the high accuracy in solar tracking. One of the key components of any motion control system is software. LabVIEW offers an ideal combination of flexibility, ease-of-use and well-integration with other I/O pieces for developing solar tracking system. Real-time solar positions which vary with GPS's data are used simultaneously to control the solar tracker by a chain of operating modes between the open and closed loops. This paper introduces a step by step procedure for the fabrication and performance assessment of a precision solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CRD sensors are applied for the solar tracking system which play a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this paper demonstrate the accuracy of the present system in solar tracking and utilization.

  • PDF

Evaluation Study on Wind Retrieval Methods from Single-Doppler Radar (단일 도플러 레이더를 이용한 풍속데이타 산출기법에 관한 연구)

  • Lim, Hee-Chang;Lee, Dong-In;Jang, Sang-Min
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.333-343
    • /
    • 2009
  • This study presents the analysis of an atmospheric flow around a single-doppler radar located in a pseudo-site. The use of a doppler radar in meteorological field of wind engineering has become widespread over the last several decades, but it has generally been recognized that the single-Doppler radar yields only one single velocity component - the radial velocity($V_r$) so that some additional hypotheses or simplifications must be necessary to get proper wind forecast. Therefore, in order to get an accurate radial velocity($V_r$) in this study, the existing methods such as VAD(Velocity Azimuth Display) and VARD(Velocity Area Display) are reformulated and applied to match the previous study(Waldteufel and Corbin), which have been an important indicator for retrieving a radar velocity. The results presented in this study include the results from different assessment methods in a peudo-site of different wind fields. Unless the existing method can consider the proper decomposition of radial velocity in the real site, then authors suggest an appropriate curve-fitting to decrease the uncertainty errors by changing a grid adaptation rate or applying a weighting function with respect to the wind angle. It is concluded that provided properly formulated fitting function are used, the wind retrieval from the Doppler radar using VAD and VARD methods can be a viable tool for use in wind engineering problems searching for the wind resources.

1.4GHz-BAND RADIO INTERFERENCES AT SEOUL RADIO ASTRONOMICAL OBSERVATORY (서울대학교 전파천문대 부근의 1.4GHz 대역 전파 환경)

  • KOO BON-CHUL;LEE JUNG-WON;KIM CHANG-HEE
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • We have carried out measurements of 1.2-1.6GHz radio interferences around Seoul Radio Astronomy Observatory located in the campus of Seoul National University. We received interference signals using a pyramidal horn antenna and measured its power using a spectrum analyzer with 1MHz resolution after $\~60dB$ amplification. In order to check the spatial characteristics, we made observations at every $30^{\circ}$ in azimuth at elevation of $30^{\circ}\;and\;60^{\circ}$. Also, in order to check the temporal characteristics, we repeated the all-sky observations five times at every six hours. The results may be summarized as follows: (1) There are strong $({\geq}-20dBm)$ interferences between 1.2 and 1.4GHz. Particularly strong interferences are observed at 1.271 and 1.281GHz, which have maximum powers of -0.34dBm and -0.56dBm, respectively. (2) The characteristics of the interferences do not depend strongly on directions, although the interferences are in general weak at high elevation and in east-west direction. (3) The interferences appear for a very short $(\leq0.01s)$ period of time, so that the average power is much smaller than the maximum power. Strong interferences with large $(\leq-49.0dBm)$ average power have been observed at 1.271, 1.281, 1.339, and 1.576GHz. At these frequencies, the interferences appear repeatedly with a period of $\leq0.1s$ By analyzing the observed power, we find that, for the strongest 1.271GHz interference, the average intensity is $-171dBW/m^2/Hz$ and that the maximum intensity is $-122dBW/m^2/Hz$. If this interference is delivered to the detector without any shielding, then its power would be much greater than the rms noise of a typical line spectrum. Therefore, it is important to shield all the parts of receiver carefully from radio interferences. Also, without appropriate shielding, the sensitivity of a receiver could be limited by the interference.

  • PDF

Sidelobe Cancellation Using Difference Channels for Monopulse Processing (모노펄스 처리용 차 채널을 이용한 부엽 잡음재머 제거)

  • Kim, Tae-Hyung;Choi, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • Sidelobe canceller(SLC) requires main beam pattern(SUM beam) and auxiliary beam patterns for rejection of sidelobe noise jammer. For best performance of sidelobe noise jamming cancellation of adaptive SLC, gain dominant region of each auxiliary beam pattern shall not be overlapped one another in elevation/azimuth regions of sidelobe of main beam, and beam patterns of auxiliary channels should have low gains in regions of mainlobe of main beam. In the monopulse radar, the difference beam patterns for monopulse processing have these properties. This paper proposes the method using data from the difference channel for monopulse processing as data from auxiliary channel for sidelobe cancellation. For the proposed SLC, the results of simulation and performance analysis was presented. If the proposed method is used in the monopulse radar, SLC can be constructed by using basic SUM and difference channels without extra channel composition.

Si(100) Surface Structure Studied by Time-Of-Flight Impact-Collision ton Scattering Spectroscopy (비행시간형 직충돌 이온산란 분광법을 이용한 Si(100) 면의 구조해석)

  • Hwang, Yeon;Lee, Tae-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.765-769
    • /
    • 2003
  • Time-Of-flight Impact-Collision Ion Scattering Spectroscopy (TOF-ICISS) using 2 keV He$\^$+/ ion was applied to study the geometrical structure of the Si(100) surface. The scattered ion intensity was measured along the [011] azimuth varying the incident angle. The focusing effects were appeared at the incident angles of 20$^{\circ}$, 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$. The Si atomic position was simulated by calculating the shadow cone to explain the five focusing effects. The four focusing effects at 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$ resulted from the {011} surface where no dimers existed on the outermost surface. On the contrary, the scattering between two Si atoms in a dimer resulted in the focusing peak at 20$^{\circ}$.

A analysis on the satellite tracking performance of Az mount on shipboard (선박탑재 Az mount의 위성추적 성능에 대한 분석)

  • 최조천
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1130-1137
    • /
    • 2003
  • This performance is motivated to develop a tracking antenna system for receive the satellite broadcasting signal in the coast sailing ship. Therefore, this system is made to small size, light weight and simple operation which is must to low cost system for popularization of small size ship and adaptive possibilities with useful on a ship in the coast using 1 axis Az-mount. The antenna mount structure is a compact size and easy operation to the Az-axis type which is operated by step motor. The antenna unit is a domestic made plate type of patch array and ship's moving detection is using the gyro sensor for ship's moving control. We are designed to algorithm, which walking is abreast for step track and ship's moving compensation. Ship's moving compensation is adapted to the closed loop control method by detection from gyro sensor. This system is consisted of micro processor, ADC, comparative amplifier, step motor driver, mount mechanism and algorithm. We have analysised the tracking performance of prototype on sailing ship board.

A Study on the DGPS Service Utilization for the Low-cost GPS Receiver Module Based on the Correction Projection Algorithm (위성배치정보와 보정정보 맵핑 알고리즘을 이용한 저가형 GPS 수신기의 DGPS 서비스 적용 방안 연구)

  • Park, Byung-Woon;Yoon, Dong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • This paper suggests a new algorithm to provide low-cost GPS modules with DGPS service, which corrects the error vector in the already-calculated position by projecting range corrections to position domain using the observation matrix calculated from the satellite elevation and azimuth angle in the NMEA GPGSV data. The algorithm reduced the horizontal and vertical RMS error of U-blox LEA-5H module from 1.8m/5.8m to 1.0m/1.4m during the daytime. The algorithm has advantage in improving the performance of low-cost module to that of DGPS receiver by a software update without any correction in hardware, therefore it is expected to contribute to the vitalization of the future high-precision position service infrastructure by reducing the costumer cost and vender risk.

Performance Analysis of the Active SAS Autofocus Processing for UUV Trajectory Disturbances Compensation (수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.215-222
    • /
    • 2017
  • An active synthetic aperture sonar mounted on small UUV is generated various trajectory disturbances in the traveling path by the influence of external underwater environments. That is the phase mismatch occurs in the synthetic aperture processing of the signals reflected from seabed objects and fetches the detection performance decreases. In this paper, we compensated deteriorated images by the active SAS autofocus processing using DPC and analyzed the effects of detection performance when the periodic trajectory disturbances occur in the side direction at a constant velocity and straight movement of UUV. Through simulations, the deteriorated images according to the periodic disturbance magnitudes and period variations in the platform were compensated using difference phases processing of the overlapping displaced phase centers on the adjacent transmitted ping signals, and we conformed the improved performance characteristics of azimuth resolution and detection images at 3dB reference point.