• Title/Summary/Keyword: axisymmetric loads

Search Result 46, Processing Time 0.018 seconds

Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die (스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3))

  • 전만수;이석원;정재헌
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Prediction of Hydodynamic Impact Loads on Three-Dimensional Bodies (3차원 물체에 작용하는 유체동력학적 충격하중추정)

  • Troesch, Arimin W.;Kang, Chang-Gu
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.73-88
    • /
    • 1990
  • The three dimensional aspects of hydrodynamic impact are discussed. Theoretical and experimental results for a sphere and a cusped body are presented. The cusped body is axisymmetric and resembles the bow profile of a ship with flare. The sphere was subjected to both vertical and oblique impact angles while the cusped body experienced only vertical motion. Three dimensional calculations using normal dipole distributions and an equi-potentioal free surface are compared with experimental results. The theoretical boundary value problem was solved using a known interior flow. This procedure reduced computation times significantly. Comparisons between theory and experiment show that, depending upon the body shape theoretical estimates of the maximum impact force may be larger or smaller than the experimental values. But the theoretical estimate can be used for practical purposes.

  • PDF

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

A Study on Convergence Contact Behavior of Friction Heat and Pad on Disk Brake (디스크 브레이크에서 마찰열과 패드에 작용하는 융합 접촉거동에 관한 연구)

  • Han, Seung-Chul;Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.283-289
    • /
    • 2018
  • In automotive disc brake systems, frictional heat is not uniformly dispersed for reasons such as heat flux and thermal deformation. The thermoelastic deformation due to the frictional heat affects the contact pressure distribution and the contact load may be concentrated on the contact portion on the the disc brake surface, resulting in thermoelastic instability. In this study, thermal analysis and thermal deformation analysis considering the contact between disk and pad occurred during braking through 3D axial symmetry model with reference to the experimental equation and Kao's analysis method of contact pressure of disk and pad. ANSYS is used to analyze the thermal and elastic instability problems occurring at the contact surface between the disk and the pad, considering both the thermal and mechanical loads. A 3D axisymmetric model with direct contact between the disk and the pad was constructed to more accurately observe the thermal behavior of the disk by observing the frictional surface temperature, thermal deformation and contact thermal stress of the disk.

A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications (구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구)

  • Kim, Jeong-Ho;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Statement of problem: Recently, there have been increased esthetic needs for posterior dental restorations. The failure of posterior dental ceramic restoration are possible not only by the characters of the component materials but also by the type of food. Purpose: The research aim was to compare the in vitro fracture resistance of simulated first molar crowns fabricated using 4 dental ceramic systems, full-porcelain-occlusal-surfaced PFG, half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon and selected Korean foods. Material and methods: Eighty axisymmetric crowns of each system were fabricated to fit a preparation with 1.5- to 2.0-mm occlusal reduction. The center of the occlusal surface on each of 15 specimens per ceramic system was axially loaded to fracture in a Instron 4465, and the maximum load(N) was recorded. Afterwards, selected Korean foods specimens(boiled crab, boiled chicken with bone, boiled beef rib, dried squid, dried anchovy, round candy, walnut shell) were prepared. 15 specimens per each food were placed under the Instron and the maximum fracture loads for them were recorded. The 95% confidence intervals of the characteristic failure load were compared between dental ceramic systems and Korean foods. Afterwards, on the basis of previous results, 14Hz cyclic load was applied on the 4 systems of dental ceramic restorations in MTS. The reults were analyzed by analysis of variance and Post Hoc tests. Results: 95% confidence intervals for mean of fracture load 1. full porcelain occlusal surfaced PFG Crown: 2599.3 to 2809.1 N 2. half porcelain occlusal surfaced PFG Crown: 3689.4 to 3819.8 N 3. Ice Zirkon Crown: 1501.2 to 1867.9 N 4. Empress 2 Crown: 803.2 to 1188.5 N 5. boiled crab: 294.1 to 367.9 N 6. boiled chicken with bone: 357.1 to 408.6 N 7. boiled beef rib: 4077.7 to 4356.0 N 8. dried squid: 147.5 to 190.5 N 9. dried anchovy: 35.6 to 46.5 N 10. round candy: 1900.5 to 2615.8 N 11. walnut shell: 85.7 to 373.1 N under cyclic load(14Hz) in MTS, fracture load and masticatory cycles are: 1. full porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 4796.8-9321.2 cycles under 2224.8 N(round candy)load, no fracture under smaller loads. 2. half porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 881705.1-1143565.7 cycles under 2224.8 N(round candy). no fracture under smaller loads. 3. Ice Zirkon Crown fractured at 95% confidence intervlas of 979993.0-1145773.4 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. 4. Empress 2 Crown fractured at 95% confidence intervals of 564.1-954.7 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. Conclusion: There was a significant difference in fracture resistance between experimental groups. Under single load, Korean foods than can cause fracture to the dental ceramic restorations are boiled beef rib and round candy. Even if there is no fracture under single load, cyclic dynamic load can fracture dental posterior ceramic crowns. Experimental data with 14 Hz dynamic cyclic load are obtained as follows. 1. PFG crown(full porcelain occlusion) was failed after mean 0.03 years under fracture load for round candy(2224.8 N). 2. PFG crown(half porcelain occlusion) was failed after mean 4.1 years under fracture load for round candy(2224.8 N). 3. Ice Zirkon crown was failed after mean 4.3 years under fracture load for boiled chicken with bone(382.9 N). 4. Empress 2 crown was failed after mean 0.003 years under fracture load for boiled chicken with bone(382.9 N).