• Title/Summary/Keyword: axis and position

Search Result 947, Processing Time 0.036 seconds

Current-Sensorless Maximum Torque per Ampere Control for a Surface Mounted Permanent Magnet Synchronous Motor with Low-Resolution Position Sensor (저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 전류센서 없는 단위 전류 당 최대 토크 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.204-210
    • /
    • 2009
  • This paper proposes a novel current-sensorless maximum torque per ampere control for a surface mounted permanent magnet synchronous motor with low-resolution position sensor. A direct axis current is estimated from the mathematical model of the permanent magnet synchronous motor and the phase angle between direct and quadrature axis voltage commands is controlled to adjust the estimated direct axis current to zero, thus a maximum torque per ampere control can be achieved. The proposed method is suitable for low cost applications with slow dynamic response characteristics.

Design of a Position Controller for Two Axis Servo System (2축 서보시스템을 위한 위치제어장치 설계)

  • Chang, Seok-Ho;Kim, Gi-Taek;Kim, Hyoung-Joong
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.115-124
    • /
    • 1991
  • In this study, we design a position controller for two axis servo system. The position controller performs numerical control(NC)to DC or AC servo motor or step motor, and also has a digital input/output sequence capability. The control program composed of position and sequence command, which is called channel, is programmed easily and user-interactively. And it is interpreted and the straight line and arc position command is interpolated. We develop the Z80 microprocessor based system and the software with assembly and C language, and also PC based graphic simulator for the debugging and educational purposes.

  • PDF

A Study on Implementable Sun Tracking Algorithm for Mobile Systems (이동형 시스템에 구현이 가능한 태양 추적 시스템에 관한 연구)

  • Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;An, Jin-Ung;Lee, Dong-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1169-1174
    • /
    • 2009
  • In this paper, a prototype of implementable Sun tracking algorithm for mobile systems powered by alternative energy is proposed. The proposed system uses 2-axis tilt sensor and 3-axis magnetic sensor to measure orientation and posture of the system according to the horizon coordinates system, which are used to compensate tilt effects. Then through astronomical calculation using the present time and position informations obtained from GPS sensors, the calculated azimuth and altitude of the Sun in that location. The position of the Sun is converted to that of the mobile Sun tracking system coordinates and used to control A-axis and C-axis of the system.

A Study on a Mobile Sun Tracking System (이동형 태양 추적 시스템에 관한 연구)

  • Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • In this paper. a prototype of a mobile Sun tracking system is proposed. The proposed system uses 2-axis tilt sensor and 3-axis magnetic sensor to measure the orientation and the posture of the system according to the horizontal system of coordinates, which are used to compensate the slope effects. Then through astronomical calculation using the time and position information obtained by GPS sensor the azimuth and altitude of the Sun from that location is calculated. The position of the Sun is converted to that of the mobile Sun tracking system coordinates and used to control A-axis and C-axis of the system.

Position and Pressure Control Using Hydraulic Axis Digital Controller (유압단축제어기(HACD)를 사용한 위치 및 압력제어)

  • Kim, D.H.;Huh, J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • These days the injection molding work and press work are in the trend of needing the precision control of position and pressure in a high speed. On the other hand the digital computer technology is developing rapidly. And recently the digital servo controller using micro controller become to be used more broadly, because of the merit of digital communication. In this study the sequential control of hydraulic system switching from position to pressure and to position is tried using the HACD(Hydraulic Axis Controller Digital for electrohydraulic drives) which is manufactured by BoschRexroth. Through this, the possibility of the precision sequential control using the digital servo controller HACD is examined.

Contour Error Analysis and Feed Controller Optimization for Machining Center (머시닝센터를 위한 윤곽오차 분석 및 이송축 제어기 최적화)

  • 김성현;윤강섭;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2003
  • One of the most important performance criteria related to the gain tuning of controller for CNC machining center is the contour error. This study analyzed circular error by the axis-matched and mismatched cases. To reduce ellipse and radius error, it is necessary to set the gain for each axis to be same bandwidth and high response. Based on the analysis in the frequency domain, we simulate feed system by mathematical model and then predict bandwidth of each axis. For analysis of structure vibration while the each axis is moving, we try the various of measuring method and position loop is improved by jerk limit.

Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller (외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어)

  • 변정환;김영복;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Influence of the anterior arch shape and root position on root angulation in the maxillary esthetic area

  • Petaibunlue, Suweera;Serichetaphongse, Pravej;Pimkhaokham, Atiphan
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Purpose: This study was conducted to characterize the relationship of the angulation between the tooth root axis and alveolar bone axis with anterior alveolar(AA) arch forms and sagittal root position (SRP) in the anterior esthetic region using cone-beam computed tomography (CBCT) images. Materials and Methods: CBCT images that met the inclusion and exclusion criteria were categorized using a recent classification of AA arch forms and a SRP classification. Then, the angulation of the root axis and the alveolar bone axis was measured using mid-sagittal CBCT images of each tooth. The relationships of the angulation with each AA arch form and SRP classification were evaluated using 1-way analysis of variance and a linear regression model. Results: Ninety-eight CBCT images were included in this study. SRP had a greater influence than the AA arch form on the angulation of the root axis and the alveolar bone axis(P<0.05). However, the combination of AA arch form and SRP was more predictive of the angulation of the root axis and the alveolar bone axis than either parameter individually. Conclusion: The angulation of the root axis and alveolar bone axis demonstrated a relationship with the AA arch form and SRP in teeth in the anterior esthetic region. The influence of SRP was greater, but the combination of both parameters was more predictive of root-to-bone angulation than either parameter individually, implying that clinicians should account for both the AA arch form and SRP when planning implant placement procedures in this region.