Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.
In the present paper, the numerical dynamic analysis of a functionally graded nano-scale nonuniform tube was investigated according to the high-order beam theory coupled with the nonlocal gradient strain theory. The supposed cross-section is changed along the pipe length, and the material distribution, which combines both metal and ceramics, is smoothly changed in the pipe length direction, which is called axially functionally graded (AFG) pipe. Moreover, the porosity voids are dispersed in the cross-section and the radial pattern that the existence of both material distribution along the tube length and porosity voids make a two-dimensional functionally graded (2D-FG) truncated conical pipe. On the basis of the Hamilton principle, the governing equations and the associated boundary conditions equations are derived, and then a numerical approach is applied to solve the obtained equations.
Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.
This work aims to study effects of the crack and the surface energy on the free longitudinal vibration of axially functionally graded nanorods. The surface energy parameters considered are the surface stress, the surface density, and the surface Lamé constants. The cracked nanorod is modelled by dividing it into two parts connected by a linear spring in which its stiffness is related to the crack severity. The surface and bulk material properties are considered to vary in the length direction according to the power law distribution. Hamilton's principle is implemented to derive the governing equation of motion and boundary conditions. Considering the surface stress causes that the derived governing equation of motion becomes non-homogeneous while this was not the case in works that only the surface density and the surface Lamé constants were considered. To extract the frequencies of nanorod, firstly the non-homogeneous governing equation is converted to a homogeneous one using an appropriate change of variable, and then for clamped-clamped and clamped-free boundary conditions the governing equation is solved using the harmonic differential quadrature method. Since the present work considers effects of all the surface energy parameters, it can be claimed that this is a comprehensive work in this regard.
This paper presents the analytical solutions for the size-dependent static analysis of the functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is assumed to vary through the thickness or longitudinal directions according to the power law. The governing equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with various boundary conditions. The verification of the model is obtained by comparing the current results with previously published works and a good agreement is observed. Numerical results are presented to show the significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length of beams on the bending behavior of nonlocal FG beams.
Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.
Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
Steel and Composite Structures
/
제28권4호
/
pp.403-414
/
2018
In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.
Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
Structural Engineering and Mechanics
/
제36권5호
/
pp.545-560
/
2010
Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.
Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
Structural Engineering and Mechanics
/
제61권5호
/
pp.685-691
/
2017
The free transverse vibrations of axially functionally graded (AFG) cantilever beams with concentrated masses attached at different points are studied in this paper. The material properties of the AFG beam, consisting of metal and ceramic, vary continuously in the axial direction according to an established law form. Approximated solutions for the title problem are obtained by means of the Ritz Method. The influence of the material variation on the natural frequencies of vibration of the functionally graded beam is investigated and compared with the influence of the variation of the cross section. The phenomenon of dynamic stiffening of beams can be observed in various situations. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study.
This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.