• Title/Summary/Keyword: axial velocity distributions

Search Result 91, Processing Time 0.02 seconds

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer (2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구)

  • 백민수;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.

DNS of turbulent concentric annular pipe flow (동심 환형관 내의 난류유동의 직접수치모사)

  • Chung, Seo-Yoon;Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor

  • Lu, Lin;Gao, Yuefei;Li, Qiang;Du, Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.

Axial Direction Velocity and Wall shear Stress Distributions of Turbulent Steady Flow in a Curved Duct (곡관덕트에 난류정상유동의 축방향 속도분포와 벽면전단응력분포)

  • 이홍구;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.131-138
    • /
    • 2001
  • In this paper, an experimental investigation of characteristics of developing turbulent steady flows in a square-sectional $180^{\circ}$curved duct is presented. The experimental study using air in a square-sectional $180^{\circ}$ curved duct carryed out to measure axials direction velocity and wall shear stress distrbutions by using Laser Dopper Velocimeter(LDV) system with data acquistion and processing the system of FIND6260 softwere at 7 sections from the inlet($\phi=0^{\circ}$) to the outlet($\phi=180^{\circ}$) in $301^{\circ}$ intervals of a curved duct.

  • PDF

Experimental Study on Turbulent Characteristics of Swirling Flow in 90$^{\circ}$ Degree Circular Tube by Using a PIV Technique (PIV기법을 이용한 원헝단면을 갖는 90$^{\circ}$ 곡관내의 선회유동의 난류특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.38-46
    • /
    • 2003
  • An experimental investigation was performed to study the turbulent characteristics of swirling flow a 90$^{\circ}C$ circular tube for Re = 10,000, 15,000 and 20,000. 2D-PIV(Particle Image Velocimetry)technique was employed to measure the fluctuation velocity field. The results include spatial distributions of mean velocity vectors, turbulence intensity and turbulence kinetic energy. The axial and radial turbulence intensities, and kinetic energy profiles show double-peak structures in the inlet region of the 90 degree bend and the profiles are disappeared along the test tube with decaying the swirl intensity.

  • PDF

Dynamic Analysis of Metal Transfer in Pulsed-GMAW (Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF

Prediction of the Effective Wake of an Axisymmetric Body (축대칭 몰수체의 유효반류 추정)

  • Kim, Ki-Sup;Moon, Il-Sung;Ahn, Jong-Woo;Kim, Gun-Do;Park, Young-Ha;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.410-417
    • /
    • 2019
  • An axisymmetric submerged body(L=5.6m, Diam=0.53m) is installed in Large Cavitation Tunnel (LCT) of KRISO and the nominal and total velocities without and with the propeller in operation, respectively, are measured using Laser Doppler Velocimeter (LDV). The flow field is nearly axisymmetric except the wake of the supporting strut, and is considered ideal to study the hydrodynamic interaction between the propeller and the oncoming axisymmetric sheared flow. The measured velocity data are then provided to compute the propeller-induced velocity to get the effective velocity, which is defined by subtracting the propeller-induced velocity from the total velocity. We adopted, in computing the induced velocity, two different methods including the vortex lattice method and the vortex tube actuator model to evaluate the resultant effective velocity distribution. To secure a fundamental base of experimental data necessary for the research on the effective wake, we measured the drag of the submerged body, the nominal and total velocity distributions at various axial locations for three different tunnel water speeds.