Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2017.09.001

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor  

Lu, Lin (School of Mechatronic Engineering, North University of China)
Gao, Yuefei (School of Mechatronic Engineering, North University of China)
Li, Qiang (School of Mechatronic Engineering, North University of China)
Du, Lin (College of Engineering, Florida Institute of Technology)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.10, no.3, 2018 , pp. 307-317 More about this Journal
Abstract
In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.
Keywords
Pumpjet propulsor; Numerical investigation; Tip clearance characteristic; Tip leakage vortex; Tip clearance size;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Morgut, M., Nobile, E., 2012. Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration. Int. J. Rotat. Mach. 2012 http://dx.doi.org/10.1155/2012/618180.   DOI
2 Muscari, R., Di Mascio, A., 2011. Numerical simulation of the flow past a rotating propeller behind a hull. In: Proceedings of the 2nd International Symposium on Marine Propulsors. Hamburg, Germany, June.
3 Pan, G., Lu, L., 2016. Numerical simulation of unsteady cavitating flows of pumpjet propulsor. Ships Offshore Struct. 11 (1), 64-74.
4 Park, W., Jang, J.H., Chun, H.H., Kim, C.M., 2005. Numerical flow and performance analysis of waterjet propulsion system. Ocean Eng. 32 (14-15), 1740-1761.   DOI
5 Rhee, S.H., Joshi, S., 2005. Computational validation for flow around a marine propeller using unstructured mesh based Navier-Stokes solver. JSME Int. J. Ser. B 48 (3), 562-570.   DOI
6 Salvatore, F., Streckwall, H., Van Terwisga, T., 2009. Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In: Proceedings of the First International Symposium on Marine Propulsors, Trondheim, Norway, June.
7 Shin, K.W., 2010. Cavitation Simulation on Marine Propellers. Technical University of Denmark, Copenhagen.
8 Singhal, A.K., Athavale, M.M., Li, H., Jiang, Y., 2002. Mathematical basis and validation of the full cavitation model. T ASME J. Fluids Eng. 124 (3), 617-624.   DOI
9 Suryanarayana, C., Satyanarayana, B., Ramji, K., Saiju, A., 2010a. Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (1), 24-33.   DOI
10 Suryanarayana, C., Satyanarayana, B., Ramji, K., Saiju, A., 2010b. Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (1), 57-67.   DOI
11 Suryanarayana, C., Satyanarayana, B., Ramji, K., Rao, M.N., 2010c. Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel. Int. J. Nav. Arch. Ocean Eng. 2 (4), 185-194.   DOI
12 Watanabe, T., Kawamura, T., Takekoshi, Y., Maeda, M., Rhee, S.H., 2003. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code. In: Proceedings of 5th International Symposium on Cavitation, Osaka, Japan, November.
13 Zhang, D., Shi, W., Chen, B., Guan, X., 2010. Unsteady flow analysis and exper- imental investigation of axial-flow pump. J. Hydrodyn. Ser. B 22 (1), 35-43.   DOI
14 Zhu, Z., Fang, S., 2012. Numerical investigation of cavitation performance of ship propellers. J. Hydrodyn. Ser. B 24 (3), 347-353.   DOI
15 Cheah, K.W., Lee, T.S., Winoto, S.H., Zhao, Z.M., 2007. Numerical flow simulation in a centrifugal pump at design and off-design conditions. Int. J. Rotat. Mach. 2007 http://dx.doi.org/10.1155/2007/83641.   DOI
16 ANSYS, 2012. ANSYS CFX and ICEM Release 14.5. ANSYS Inc, Canonsburg (PA).
17 Arazgaldi, R., Hajilouy, A., Farhanieh, B., 2009. Experimental and numerical investigation of marine propeller cavitation. Scientia Eranica Trans. B Mech. Eng. 16 (6), 525-533.
18 Brennen, C.E., 2013. A review of the dynamics of cavitating pumps. ASME J. Fluids Eng. 135 (6), 061301.   DOI
19 Ivanell, S., 2001. Hydrodynamic Simulation of a torpedo with Pump Jet Propulsion System. Royal Institute of Technology, Stockholm, Sweden, p. 77 (Master thesis).
20 Ji, B., Luo, X., Wu, Y., Liu, S., Xu, H., Oshima, A., 2010. Numerical investigation of unsteady cavitating turbulent flow around a full scale marine propeller. J. Hydrodyn. Ser. B 22 (5), 747-752.   DOI
21 Ji, B., Long, Y., Long, X.P., Qian, Z.D., Zhou, J.J., 2017. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions. J. Hydrodyn. Ser. B 29 (1), 27-39.   DOI
22 Ji, B., Luo, X., Wu, Y., 2014a. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles. J. Mech. Sci. Technol. 28 (4), 1339-1348.   DOI
23 Ji, B., Luo, X., Arndt, R.E., Wu, Y., 2014b. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cav- itationevortex interaction. Ocean Eng. 87, 64-77.   DOI
24 Ji, B., Luo, X.W., Arndt, R.E., Peng, X., Wu, Y., 2015. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int. J. Multiph. Flow 68, 121-134.   DOI
25 Li, D., Grekula, M., Lindell, P., Hallander, J., 2012. Prediction of cavitation for the INSEAN propeller E779A operating in uniform flow and non-uniform wakes. In: Proceedings of the 8th International Symposium on Cavitation. Singapore, pp. 368-373.
26 Lindau, J.W., Boger, D.A., Medvitz, R.B., Kunz, R.F., 2005. Propeller cavitation breakdown analysis. J. Fluids Eng. 127 (5), 995-1002.   DOI
27 Liu, Y., Zhao, P., Wang, Q., Chen, Z., 2012. URANS computation of cavitating flows around skewed propellers. J. Hydrodyn. Ser. B 24 (3), 339-346.   DOI
28 Lu, L., Pan, G., Sahoo, P.K., 2016. CFD prediction and simulation of a pumpjet propulsor. Int. J. Nav. Arch. Ocean Eng. 8 (1), 110-116.   DOI
29 Luo, X.W., Bin, J.I., Tsujimoto, Y., 2016. A review of cavitation in hydraulic machinery. J. Hydrodyn. 28 (3), 335-358.   DOI