• 제목/요약/키워드: axial thrust force

검색결과 47건 처리시간 0.033초

75톤급 로켓엔진용 연료펌프의 축추력 측정 (Axial Thrust Measurement of Fuel Pump for 75-ton Class Rocket Engine)

  • 김대진;홍순삼;최창호;김진한
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.8-13
    • /
    • 2010
  • 축추력의 효과적인 제어는 터보펌프의 작동 안정성을 확보하는 데 중요한 기술 중 하나이다. 현재 개발 중인 75톤급 로켓엔진용 연료펌프에 대한 축추력 측정을 상온의 물을 매질로 하여 실시하였다. 시험 결과, 연료펌프의 축추력은 펌프 베어링의 축방향 하중 조건을 만족하는 것으로 예상되었다. 또한 연료펌프의 축추력은 대체로 유량이 작을수록 커졌다. 그리고 플로팅 링 실과 임펠러 사이의 간극이 바뀌었을 때, 연료펌프의 축방향 하중과 후방 누설 유량이 변화하는 것을 확인하였다.

공기 포일 스러스트 베어링의 하중지지능력에 관한 연구 (A study of the Load Capacity of Air Foil Thrust Bearings)

  • 이용복;김태영;박동진
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.292-297
    • /
    • 2009
  • Air foil thrust bearings are the critical components available on high-efficiency turbomachinery which need an ability to endure the large axial force. Air foil bearings are self-acting hydrodynamic bearings that use ambient air as their lubricant. Since the air is squeezed by the edge of compliance-surface of bearing, hydrodynamic force is generated. In this study, we measured the air film thickness and obtained the minimum film thickness experimentally. To increase the maximum load capacity, compliance of sub-structure was controlled. From numerical analyses, it is seen that, if the air film thickness is distributed more uniformly by variable compliance, the thrust bearings can take more axial load.

운전 상태에서의 터보차저 축 추력 예측 (Prediction of Axial Thrust Load under Turbocharger Operating Conditions)

  • 이인범;홍성기;김영철;최복록
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.

대형 회전기 Axial Magnetic Force 해석 (The Analysis of the Axial Magnetic Force for Large Rotating Machines)

  • 이정일;김기찬;권중록;제준모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.827-829
    • /
    • 2004
  • A characteristic of the rotating machine that has been receiving relatively little attention is the axial force on the rotor versus its axial displacement from magnetic neutral position. A knowledge of this force is essential to the economic application of thrust bearings for rotating machine and their connected loads. In this paper this axial force is analyzed and calculated and test values are verified with two different machines.

  • PDF

자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구 (A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission)

  • 권현식
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

차량용 고무 및 금속 V-벨트 CVT의 변속비-부하토크-축력특성과 성능비교 (Comparison of speed ratio-torque load-axial force characteristics and their performance for automotive rubber and metal V-belt CVT)

  • 김현수;김광원
    • 오토저널
    • /
    • 제12권3호
    • /
    • pp.9-20
    • /
    • 1990
  • The speed ratio-torque load-axial force characteristics of a rubber V-belt (RVB) and a metal V-belt (MVB) CVT are investigated and their performances are compared. It is found that power is transmitted by tension difference in RVB, and by thrust difference in MVB. The nondimensional equations for speed ratio-torque load-axial force of RVB are exactly same as those of MVB. However, actual characteristics of axial forces of RVB and MVB are different depending on their power transmission methods. The torque capacity of MVB is 5-6 times higher than that of RVB due to MVB's higher strength, even if the required axial force of MVB CVT control is 3-4 times higher than that of RVB.

  • PDF

이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석 (Performance Analysis of SITVC System with Various Secondary Injection Conditions)

  • 배지열;송지운;김태환;조형희;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.116-121
    • /
    • 2011
  • SITVC 시스템의 이차분사 노즐 분사 조건 변화에 따른 시스템 성능 변화를 수치적으로 연구하였다. 해석에 사용된 형상은 3차원 종형 수축-팽창 노즐이고 측면에 8개의 이차분사 노즐을 가진다. 노즐 내부 유동은 전압이 70bar이며 300K의 cold flow로 가정하였다. 이차 유동의 유량 변화와 노즐 작동 조건 변화를 고려하였다. 상용코드인 Ansys Fluent v.13을 통해 해석하였고, 난류모델은 Spalart-Allmaras model(1- equation)를 사용하였다. 충격파의 수치적 진동을 막고 충격파의 불연속성을 잘 해석하기 위해 AUSM+ scheme을 사용하였다. Axial thrust, side force, system specific impulse ratio 와 같은 성능 변수를 사용해 시스템 성능을 평가하였다.

  • PDF

동체 내삽형 추진기관 연결장치 연구 (Research on the Rocket Motor Support Structure Inserted inside the Missile Fuselage)

  • 박경민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.265-270
    • /
    • 2010
  • 본 연구에서는 유도무기 동체 내에 고체 추진기관을 삽입하여 장착할 경우 적용할 수 있는 연결장치와 조립체 개념을 제안하였다. 유도탄 동체 내에 추진기관을 삽입하여 장착하는 경우는 동체가 비행중 받는 하중에 더하여 추진기관의 연소에 의해 야기되는 여러 가지 효과 즉, 추력에 의한 축하중, 진동, 연소 중 발생하는 추진기관의 축방향 변형 등을 견디는 구조여야 한다. 본 연구에서 제안된 추진기관 연결장치를 통해 간결하면서도 설계 요구조건을 모두 만족하는 추진기관 장착 시스템을 구성할 수 있었다.

  • PDF

다 경간 압축재의 하중-진동수 관계 (Load-Frequency Relationships of Continuous Compression Members)

  • 이수곤;김순철;임동혁
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

정현상 비대칭으로 Taper진 부재의 임계하중과 고유진동수와의 관계 (The Relationship between Critical Load and Frequency of Sinusolidally Non-symmetrically Tapered Member)

  • 이혁;홍종국;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.59-66
    • /
    • 2000
  • It is generally known that the lateral frequency( ω) of the vibration of a prismatic beam-column decreases according to the rele (equation omitted) (ω/sub 0/=natural frequency). In the cases of tapered members, the determination of P/ sub/ cr/(elastic critical load) and ω/ sub 0/ are not easy. Furthermore, the relationship between the compressive load and frequency can not be determined by the conventional analytical method. The axial force-frequency relationship of sinusolidally non-symmetrically tapered members with different shapes were investigated using the finite element method. To obtain the two eigenvalues, the axial thrust was increased step by step and the corresponding frequency was calculated. The result indicated that the axial thrust of the elastic critical load ratio and the square of the frequency ratio can be approximately represented in any case by a straight line. Finally, the linear relationship is also applicable to the sinusolidally non-symmetrically tapered member.

  • PDF