• Title/Summary/Keyword: axial stiffness

Search Result 752, Processing Time 0.027 seconds

A Study on the Stability of Underground Structure considering the Orientation and the Stiffness of Discontinuity (불연속면의 경사와 강성을 고려한 지하구조물 안정성에 관한 연구)

  • Lee, Seung-Ho
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 1997
  • Underground structures show different behaviors depending upon the space and the mechanical characteristics of discontinuities, such as joints, beddings, faults and shear zone. Desingning the rock structeres without considering the significance of these discontinuities can lead to false conclusions. This paper includes study on the following topics; the numerical analysis of continuous rock and discontinuous rock around a tunnel, the influences on shotcrete moment and rock-bolt axial force of tunnel due to different joint orientation and stiffness.

  • PDF

A Study of th stick-slip by feed of the machining center (공작기계 이송시 스틱슬립에 관한 고찰)

  • 정성택;박종남;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.420-424
    • /
    • 1997
  • n the ballscrew slide system the ~najor problems in accomplishing the high-speed and high-precision are the friction between elements and the decrease of axial stiffness. Especially the friction on the guide have a bad effect on the precision of slidlng. Furthermore stick-slip occur when the low stiffness of slide system. The sticli-slip have a bad influence on the precision. In this research, the affection of stick-slip friction to the precision of the slide system is studied and the possible solution of the precision is proixjsed.

  • PDF

Crush Characteristics of Thin-walled Rectangular Tube (박판사각튜브의 압괴 특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • Lee Ho-Jung;Chun Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • 전경진;이호중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

  • Li, Jun;Jiang, Li;Li, Xiaobin
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The coupled equations of motion of the composite beams are derived with help of the Hamilton's principle. The effects of the shear deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present results with the available solutions in literature.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns (전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬)

  • Yoon Hee-Taek;Park Young-Kon;Kim Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

Evaluation of Structural Response of Base Isolated Frame Considering Uplift Effect of Isolators (면진장치 들림 효과를 고려한 면진된 골조의 구조 거동 평가)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • After obtaining tensile and compressive stiffness as well as shear stiffness of elastomeric seismic isolator experimentally, those stiffness were modeled analytically using nonlinear computer program. To induce tensile stress due to overturning in the seismic isolators of an isolated frame for horizontal force, free vibration simulations generated by large initial displacement were conducted. Since elastomeric seismic isolator is weak for tensile stress, the axial stiffness of isolators shall be included properly in the analytical model to evaluate the uplift phenomenon of elastomeric seismic isolator.

  • PDF

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.