• 제목/요약/키워드: axial motion

검색결과 425건 처리시간 0.03초

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Experimental Study on Axial Stratification Process and Its Effects (I) - Stratification in Engine -

  • Ohm, In-Yong;Park, Chan-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1457-1469
    • /
    • 2002
  • This paper is the first of several companion papers, which investigate axial stratification process and its effects in an Sl engine. The axial stratification is very sophisticate phenomenon, which results from combination of fuel injection, port and in-cylinder flow and mixing. Because of the inherent unsteady condition in the reciprocating engine, it Is impossible to understand the mechanism through the analytical method. In this paper, the ports were characterized by swir and tumble number in steady flow bench test. After this, lean misfire limit of the engines, which had different port characteristic, were investigated as a function of swirl ratio and injection timing for confirming the existence of stratification. In addition, gas fuel was used for verifying whether this phenomenon depends on bulk air motion of cylinder or on evaporation of fuel. High-speed gas sampling and analysis was also performed to estimate stratification charging effect. The results show that the AFR at the spark plug and LML are very closely related and the AFR is the results of bulk air motion.

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

인공디스크에 대한 생체역학적 분석 (Biomechanical Analysis of the Artificial Discs)

  • 김영은;윤상석;정상기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 2005
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical change with its implantation was rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Two models implanted with artificial discs, SB $Charit\acute{e}$ or Prodisc, via anterior approach were also developed. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, force on spinal ligaments and facet joint, and the stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400 N were compared. The implanted model showed increased flexion-extension range of motion and increased force in the vertically oriented ligaments, such as ligamentum flavum, supraspinous ligament and interspinous ligament. The increase of facet contact force on extension were greater in implanted models. The incresed stress distribution on vertebral endplate for implanted cases indicated that additinal bone growth around vertebral body and this is matched well with clinical observation. With axial rotation moment, relatively less axial rotation were observed in SB $Charit\acute{e}$ model than in ProDisc model.

  • PDF

퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어 (Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller)

  • 신두진;허욱열
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권8호
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

Bridge Weigh-in-Motion 기법을 이용한 주행차량 중량추정에 관한 연구 (A Study on Weight Estimation of Moving Vehicles using Bridge Weigh-in-Motion Technique)

  • 오준석;박주영;김준경;박승희
    • 한국전산구조공학회논문집
    • /
    • 제28권1호
    • /
    • pp.29-37
    • /
    • 2015
  • 본 연구에서는 BWIM(Bridge Weigh-in-Motion) 시스템을 기반으로 주행차량의 총중량 및 축중량 추정을 수행하였다. BWIM 시스템의 개발을 위해 차량 주행시험은 필수적이지만 그 비용과 시간이 많이 소요되고, 다양한 차량 주행 조건의 적용이 어렵다. 따라서 차량 주행시험의 비용 및 시간적 문제점을 보완하고, 주행 조건에 따른 다양한 교량응답의 확보할 수 있는 수치 시뮬레이션이 현장실험과 병행되어야한다. 본 연구에서는 교량의 동적특성을 반영하는 수치 시뮬레이션을 수행하여 교량의 응답을 획득하고, 통행 차량의 중량을 산출하는 BWIM 시스템에 적용하여 총중량 및 축중량 추정을 수행하고 정밀해석모델기반 과적단속기술에 대하여 제안하였다.

측방향 움직임 보상을 이용한 초음파 의료용 변형률 영상의 화질개선 (Improvement of Medical Ultrasound Strain Image Using Lateral Motion Compensation)

  • 박명기;권성재;정목근
    • 한국음향학회지
    • /
    • 제30권5호
    • /
    • pp.239-248
    • /
    • 2011
  • 초음파 의료용 변형률 영상에서 화질을 향상시키기 위해서는 정확한 변위를 계산하여야 한다. 본 논문에서는 2차원 방향의 움직임에 의한 변위를 구할 때 1차원 변위 계산법을 적용하기 위하여 초음파 신호의 축방향 변위와 측방향 변위를 분리하여 계산하였다. 측방향 변위를 계산하기 위하여, 측방향으로 정렬된 1차원 신호를 해석 신호 (analytic signal)로 변환한 뒤 상호상관방법을 이용하였다. 제안한 측방향 변위계산 알고리즘을 이용하여 구한 측방향 변위로 측방향 움직임을 보상한 뒤에, 다시 축방향 변위를 구하여 변형률 영상을 얻었다. 제안한 방법으로 얻은 변형률 영상은, 기존의 축방향 변위만 계산하여 얻은 변형률 영상에 비해 신호 대 잡음비와 명암대비 대 잡음비에서 향상됨을 팬텀과 인체 데이터를 이용한 실험을 통해 확인하였다.

고정밀 운동제어를 위한 2축 서보메커니즘의 최적튜닝 (Optimal Tuning of Bi-axial Servomechanisms for High-Precision Motion Control)

  • 성철모;정성종
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.44-51
    • /
    • 2008
  • In this paper, the optimal tuning of a cross-coupled controller linked with the feedforward controller is studied to reduce contouring and tracking errors of a bi-axial servomechanisms by using the previously developed integrated tuning method. The CCC system for an arbitrary curve, which is combined with the feedforward controller, is formulated by a state-space based on a series of linear motion trajectories. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including relevant controller parameters of the servo. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed control and tuning system.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석 (Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element)

  • 이덕규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2001
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss actors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effect of the axial tension and compression load on the frequencies and loss factors is discussed.

  • PDF