• Title/Summary/Keyword: axial load effect

Search Result 544, Processing Time 0.025 seconds

Semi-numerical simulation for effects of different loadings on vibration behavior of 2D systems

  • Rao, Li;Lin, Chao;Zhang, Chenglin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), an investigation on the free vibrations of 2D plate systems with nano-dimensions has been provided taking into account the effects of different mechanical loadings. In order to capture different mechanical loadings, a general form of variable compressive load applied in the axial direction of the plate system has been introduced. The studied plate has been constructed from two types of particles which results in graded material properties and nanoscale pores. The established formulation for the plate is in the context of a novel shear deformable model and the equations have been solved via a semi-numerical trend. Presented results indicate the prominence of material composition, nonlocal coefficient, strain gradient coefficient and boundary conditions on vibrational frequencies of nano-size plate.

Shape Extraction of Stiffeners of H-beam using Topologically Structural Optimization (위상최적설계를 이용한 H형강 부재의 스티프너 형상탐색)

  • Jung, Wonsik;Banh, Thien Thanh;Lee, Dongkyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns with Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.473-480
    • /
    • 2009
  • The 180 minutes fire test based on the standard curve of ISO-834 were conducted on three RC column specimens with different constant axial loading ratios to evaluate the fire performance of fiber cocktail (polypropylene+steel fiber) reinforced high strength concrete column. The columns were tested under three loading levels as 40%, 50%, and 61% of the design load. No explosive spalling has been observed and the original color of specimen surface has been changed to light pinkish grey. The maximum axial displacements of three specimens were 1.5~2.2 mm. There was no reduction in load bearing capacity of each specimen exposed to fire and no effect were observed on the fire performance within 61% of the design load. The tendencies of the results with loading, such as the temperature distribution of in concrete and the changes in temperature rise due to the water vaporization in concrete, are very similar to those without loading. The final temperatures of steel rebar after 180 minutes of fire test resulted in 491.4${^{\circ}C}$ for corner rebar, 329.0${^{\circ}C}$ for center rebar, and 409.8${^{\circ}C}$ for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 153.7${^{\circ}C}$ㅍ. The tendency of temperature rise in concrete and steel rebar changed after 30~50 minutes from the starting time of the fire test because the heat energy influx into corner rebar is larger than that into center rebar. The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams

  • Bellifa, Hichem;Benrahou, Kouider Halim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • In this work, a nonlocal zeroth-order shear deformation theory is developed for the nonlinear postbuckling behavior of nanoscale beams. The beauty of this formulation is that, in addition to including the nonlocal effect according to the nonlocal elasticity theory of Eringen, the shear deformation effect is considered in the axial displacement within the use of shear forces instead of rotational displacement like in existing shear deformation theories. The principle of virtual work together of the nonlocal differential constitutive relations of Eringen, are considered to obtain the equations of equilibrium. Closed-form solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state for simply supported and clamped clamped nanoscale beams are determined.

Analysis of Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 군말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung;Kwak, Ki-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1132-1139
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. As the results, the axial capacity of the composite pile was about 73% larger than that of the steel pipe pile and about 14% larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 51% of that of the steel pile and about 19% of that of the concrete pile.

  • PDF

Effect of boundary conditions on the stability of beams under conservative and non-conservative forces

  • Marzani, Alessandro;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.195-217
    • /
    • 2003
  • This paper, which is an extension of a previous work by Viola et al. (2002), deals with the dynamic stability of beams under a triangularly distributed sub-tangential forces when the effect of an elastically restrained end is taken into account. The sub-tangential forces can be realised by a combination of axial and tangential follower forces, that are conservative and non-conservative forces, respectively. The studied beams become unstable in the form of either flutter or divergence, depending on the degree of non-conservativeness of the distributed sub-tangential forces and the stiffness of the elastically restrained end. A non-conservative parameter ${\alpha}$ is introduced to provide all possible combinations of these forces. Problems of this kind are usually, at least in the first approximation, reduced to the analysis of beams according to the Bernoulli-Euler theory if shear deformability and rotational inertia are negligible. The equation governing the system may be derived from the extended form of Hamilton's principle. The stability maps will be obtained from the eigenvalue analysis in order to define the divergence and flutter domain. The passage from divergence to flutter is associated with a noticeable lowering of the critical load. A number of particular cases can be immediately recovered.

Parametric study of laterally loaded pile groups using simplified F.E. models

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The problem of laterally loaded piles is particularly a complex soil-structure interaction problem. The flexural stresses developed due to the combined action of axial load and bending moment must be evaluated in a realistic and rational manner for safe and economical design of pile foundation. The paper reports the finite element analysis of pile groups. For this purpose simplified models along the lines similar to that suggested by Desai et al. (1981) are used for idealizing various elements of the foundation system. The pile is idealized one dimensional beam element, pile cap as two dimensional plate element and the soil as independent closely spaced linearly elastic springs. The analysis takes into consideration the effect of interaction between pile cap and soil underlying it. The pile group is considered to have been embedded in cohesive soil. The parametric study is carried out to examine the effect of pile spacing, pile diameter, number of piles and arrangement of pile on the responses of pile group. The responses considered include the displacement at top of pile group and bending moment in piles. The results obtained using the simplified approach of the F.E. analysis are further compared with the results of the complete 3-D F.E. analysis published earlier and fair agreement is observed in the either result.