• 제목/요약/키워드: axial load effect

검색결과 541건 처리시간 0.027초

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.

전단보강근비에 따른 고강도 철근콘크리트 내력벽의 이력특성 (Effects of Web Reinforcement Amount on Hysteretic Behavior of High Strength Reinforced Concrete Structural Walls)

  • 최근도;정학영;윤현도;최장식;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.85-90
    • /
    • 1994
  • Three high strength reinforced concrete structural walls were tested under the combined action of a constant axial and a horizontal cycle load. The aim of the tests has been to investigate the effects of the web horizontal reinforcement on hysteretic behavior of wall. The results have helped to identify the causes of wall failure and have demonstrated the web horizontal reinforcement does not appear have a significant effect on shear capacity, stiffness and energy dissipation but have a significant effect on the failure mode of the walls.

  • PDF

조합된 나선근으로 횡보강된 콘크리트의 횡보강효과 (An experimental Study on the Confinement Effect of Concrete specimens confined by Interlocking Spirals)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.306-311
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by interlocking spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete with 2 levels(normal and high strength), the spacing of the spiral reinforcement, the yield strength of the spiral reinforcement with 2 levels and 4 different interlocking lengths. For the same volumetric ratio, the use of interlocking spirals is not as effective as the single spirals, provided that the spirals have the same diameter.

  • PDF

과다 예압을 받는 테이퍼롤러 베어링의 수명단축효과에 대한 실험적 연구 (Experimental Study of the Effect of Shortening of Life of Tapered Roller Bearings when Subjected to Excessive Axial Pre-Load)

  • 박종원;김형의;김종억;심양진;정원욱
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1161-1166
    • /
    • 2010
  • 테이퍼롤러 베어링은 축하중과 반경방향 하중이 동시에 인가되는 회전기계의 핵심 부품으로, 자동차 입력축과 출력축의 지지 베어링 등에 주로 사용되고 있다. 특히, 변속기에 사용되는 테이퍼롤러 베어링의 경우 조립시에 축방향 과다 예압이 인가된 상태로 조립된 경우 베어링의 수명이 단축되는 결과를 가져올 수 있다. 본 연구에서는 테이퍼롤러 베어링의 축방향 과다 예압에 의한 수명 단축 효과를 실험적으로 검증하고 그 결과에 의한 베어링의 수명 분포를 분석하였다. 또한, 기존의 $L_{10}$ 수명식에 비하여 현장 작동 조건에 따른 실질적인 수명을 산출할 수 있는 축방향과 반경방향을 고려한 수명식을 도출하고 이를 프로그램화 하여 설계 및 생산 현장에서 용이하게 활용할 수 있도록 하였다.

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

락볼트로 보강된 심형기초의 하중-침하 분석 (Load-Settlement Characteristics of Drilled Shafts Reinforced by Rockbolts)

  • 윤경식;이대수;정상섬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.366-373
    • /
    • 2002
  • This paper describes the load distribution and settlement of rockbolted-drilled shafts subjected to axial and lateral loads with the view to shortening the embedded depth of the pile shaft. The emphasis was on quantifying the reinforcing effects of rockbolts placed from the shafts to surrounding weathered rocks based on small-scale model tests peformed on instrumented piles. The major influencing parameters on reinforcing drilled shaft behavior are the number, the positions on the shaft, the grade, and the inclination angle at which the rockbolts are placed. The model tests was 1/40 scaled simulations of the behavior of the drilled shafts with varying combinations of the major influencing parameters. The incremental effects of reinforcement based on the various parameters have been weighed against load transfer characteristics before and after rockbolt installations.

  • PDF

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권2호
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Influence of stiffener edge on the buckling load of holed composite plates

  • Zakeri, Mahnaz;Mozaffari, Ali;Katirae, Mohamad A.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.681-688
    • /
    • 2018
  • In this paper, buckling load of edge stiffened composite plates is assessed. The effect of stiffener edge size, circular hole, and the fiber orientation angle on buckling behavior of composite plates under uni-axial compressive load is investigated. This paper includes two parts as experimental and numerical studies. L-shape composite plates are manufactured in three different layups. Then the buckling loads are experimentally determined. Subsequently, by using the numerical simulation, the size variation effects of stiffener edge and circular cutout on the plate buckling loads are analyzed in five different layups. The results show that cutout size, stiffener edge height and fiber orientation angle have important effects on buckling load. In addition, there is an optimum height for stiffener edge during different conditions.

Impact of Screw Type on Kyphotic Deformity Correction after Spine Fracture Fixation: Cannulated versus Solid Pedicle Screw

  • Arbash, Mahmood Ali;Parambathkandi, Ashik Mohsin;Baco, Abdul Moeen;Alhammoud, Abduljabbar
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1053-1059
    • /
    • 2018
  • Study Design: Retrospective review. Purpose: To detect the effect of cannulated (poly-axial head) and solid (mono-axial head) screws on the local kyphotic angle, vertebral body height, and superior and inferior angles between the screw and the rod in the surgical management of thoracolumbar fractures. Overview of Literature: Biomechanics studies showed that the ultimate load, yield strength, and cycles to failure were significantly lower with cannulated (poly-axial head) pedicle comparing to solid core (mono-axial head). Methods: The medical charts of patients with thoracolumbar fractures who underwent pedicle screw fixation with cannulated or solid pedicle screws were retrospectively reviewed; the subjects were followed up from January 2011 to December 2015. Results: Total 178 patients (average age, $36.1{\pm}12.4years$; men, 142 [84.3%]; women, 28 [15.7%]) with thoracolumbar fractures who underwent surgery and were followed up at Hamad Medical Corporation were classified, based on the screw type as those with cannulated screws and those with solid screws. The most commonly affected level was L1, followed by L2 and D12. Surgical correction of the local kyphotic angle was significantly different in the groups; however, there was no significant difference in the loss of correction of the local kyphotic angle of the groups. Surgical correction of the reduction in the vertebral body height showed statistical significance, while the average loss of correction in the reduction of the vertebral body height was not significantly different. The measurement of the angles made by the screws on the rods was not significantly different between the cannulated (poly-axial head) and solid (mono-axial head) screw groups. Conclusions: Solid screws were superior in terms of providing increased correction of the kyphotic angle and height of the fractured vertebra than the cannulated screws; however, no difference was noted between the screws in the maintenance of the superior and inferior angles of the screw with the rod.

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.