• Title/Summary/Keyword: axial load capacity

Search Result 576, Processing Time 0.023 seconds

Validation Study on Processing Grip Part of Tensile Specimen Acquired from Corroded Pipeline (부식이 존재하는 기존 노후 관로에서 인장 시편 가공 시 그립 가공 타당성에 대한 연구)

  • Nam, Young Jun;Kim, Jeong Hyun;Bae, Cheol Ho;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.191-195
    • /
    • 2020
  • In this work, tensile tests, one of the most common test method to assess the condition of a corroded pipe, were conducted. According to ASTM E8 method, the use of flat or curved uni-axial tension test is allowed under the recommendation with the usage of grips corresponding to a curvature of the pipe. However, this method is not for corroded specimen. Furthermore, in the case of performing the multiple tensile tests with various curvatures, it is desirable not to produce zigs that fit each curvatures, if merely processing the specimen grip with curvature into the flat grip can show almost identical tensile behavior. Therefore, various tension simulations were conducted first to check if there exist any differences. Also, experiments on corroded tensile specimen were conducted and compared with the FEM simulation that reflects the actual geometry acquired from the 3D scanner.

Experimental Study on Compressive Strength of Concrete Column Retrofitted by Carbon FRP Sheet (탄소섬유시트로 보강된 콘크리트 기둥의 압축성능 평가를 위한 실험연구)

  • Yoo, Youn-Jong;Lee, Kyoung-Hun;Kim, Heecheul;Lee, Young-Hak;Hong, Won-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • In 1980 and 1990's most of residential buildings were constructed with relatively low strength concrete of 18 MPa. And, columns were designed considering only vertical loads. In this study, compressive strength tests for low strength RC columns retrofitted by carbon fiber sheets were carried out. Carbon fiber sheet provides constructability and high tensile strength as well as good corrosion resistance characteristics. A pair of carbon sheets were wrapped with ${\pm}60^{\circ}$ angle with respect to longitudinal direction of RC column to increase structural capacity against axial and lateral load simultaneously. Strength and strain patterns and failure modes of specimens were analyzed and prediction equation of increased compressive strength of RC column confined by carbon fiber sheet was proposed based on regression analysis.

Evaluation of Performance Simulation for Bridge Substructure Due to Types of Scour (지반세굴 유형에 따른 교량 하부구조의 해석적 거동 예측)

  • Jung, Wooyoung;Yune, Chanyoung;Lee, Ilhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • The primary objective of this research is to evaluate the behavior of a bridge substructure subjected to scouring during flood. A finite element (FE) study was carried out on a substructure modeled using the standard section specified for highway bridges. The three-dimensional FE model consists of non-linear springs with tri-axial load capacities at the base in order to consider the loss of bearing capacity of the substructure by local scour phenomenon. Various time varying loading conditions and scouring patterns were considered in the analysis. The results indicate a change in the structural behavior of substructure depending on the eroded area and pattern. The outcome of this research will be useful to suggest basic design guidelines for ground sills of the bridge substructure.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

An Experimental Study on Distribution of Ultimate Strength of Concrete-Filled Steel Tube Columns according to Concrete Strength and Section Properties Ratio (콘크리트강도 및 단면특성에 따른 콘크리트 충전강관(CFT) 기둥의 극한강도 분포에 관한 실험적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • Recently, to improve the load carrying capacity of column structures such as bridge piers, application to concrete-filled steel tube(CFT) type columns are increased more and more. To design the concrete-filled steel tube(CFT) columns in accuracy, influence of material and geometry properties and aspect ratio on ultimate strength of the concrete-filled steel tube column is investigated by experimental researches. In this investigation, the ultimate strength distribution of the concrete-filled steel tube column in accordance with diameter-thickness ratio(D/t) and steel-concrete area ratio(As/Ac) are clarified by the compressive tests. Futhermore, parametric experimental investigation on concrete target strength is performed. It was known from experimental observation that ultimate strength of concrete-filled steel tube column under axial compressive loading more depends on section properties of steel tube rather than concrete strength.

  • PDF

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Influence of Anchorage of T-Plate on the Seismic Performance of RC Columns Strengthened with Unbounded Wire Rope Units (와이어로프 기반 비부착 보강된 RC 기둥의 내진거동에 대한 T형 강판 정착의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.133-140
    • /
    • 2010
  • Five strengthened columns and an unstrengthened column were tested under constant axial load and cyclic lateral loads to examine the seismic performance of the unbounded strengthening procedure using wire ropes and T-plates. Main variables considered were the presence of mortar cover for strengthening steel element and anchorage method of T-plate. Test results clearly showed that T-plates having a proper anchorage contribute to transfer of applied moment as well as enhancement of ductility of reinforced concrete columns. However, T-plate not anchored fully into a column base can seldom transfer the externally applied moment, though it highly improves the ductility of column. The presence of mortar cover for strengthening steel elements is significantly effective in enhancing the initial stiffness and flexural capacity of the strengthened columns, but has an adversely effect on enhancing the ductility. The ultimate moment strength predicted from the extended section laminae method in better agreement with test results compared with predictions obtained using stress black specified in ACI 318-05.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.