• Title/Summary/Keyword: axial load

Search Result 1,928, Processing Time 0.029 seconds

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Seismic performance of RC short columns with light transverse reinforcement

  • Tran, Cao Thanh Ngoc;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.93-104
    • /
    • 2018
  • The seismic behavior of reinforced concrete (RC) short columns with limited transverse reinforcement is investigated in this paper through an experimental program. The experimental program consists of four small-scale RC columns with an aspect ratio of 1.7, which are tested to the axial failure stage. The cracking patterns, hysteretic responses, strains in reinforcing bars, displacement decomposition and cumulative energy dissipation of the tested specimens are reported in detail in the paper. The effects of column axial load are investigated to determine how this variable might influence the performance of the short columns with limited transverse reinforcement. Brittle shear failure was observed in all tested specimens. Beneficial and detrimental effects on the shear strength and drift ratio at axial failure of the test specimens due to the column axial load are found in the experimental program, respectively.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Evaluation of Performance of CFRP Sheet Reinforcement on RC Members Subjected to Axial Load and Flexural Moment (축력과 휨 모멘트를 받는 RC 부재의 CFRP 시트 보강에 따른 성능 평가)

  • Bae, Chan Young;Lee, Ji Hyeong;Kim, Sang Woo;Kim, Jin Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.567-576
    • /
    • 2023
  • In general, RC beam members are designed as flexural members, considering only the bending load. However, in actual buildings, axial and bending load are simultaneously applied due to the continuity between members. As a result, the bending strength of the RC beam member increases, but the displacement decreases, and cracks are mainly concentrated in the center of the beam. Therefore, in this study, the bending performance of both normal and strengthened RC beam using carbon fiber sheets subjected to combined axial and bending load was experimentally evaluated. The carbon fiber sheets were wrapped around the middle of the specimens, and axial and bending load were applied simultaneously to the beams. The magnitude of the axial force and the effects of carbon fiber sheet reinforcement on the deformed shape, bending strength, deflection, and ductility of the RC beams were analyzed. The results show that as the applied axial force increased, the maximum bending strength increased, but the ductility decreased 64%. The bending strength of the strengthened beams increased up to 27%, the maximum deflection decreased around 8% and the ductility increased by up to 43%.

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

EFFECTS OF OVERDENTURE RETENTION ON THE AXIAL LOAD OF IMPLANT IN THE MANDIBULAR IMPLANT-SUPPORTED OVERDENTURE (하악 임플란트지지 오버덴춰에서 바 어태치먼트의 유지력이 임플란트의 축력에 미치는 영향)

  • Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.98-107
    • /
    • 2000
  • Three linear strain gauges (KFR-02N-120-C1-23, Kyowa, Japan) were placed around the abutment of implant future and the maximum axial loads on the mandibular implants supporting over dentures were registered in experimental model when the overdenture was removed. The overdenture attachments used in this study were Round bar Hader bar, Dolder bar with and with out spacer. The retention of bar attachment was measured using universal testing machine while being con-trolled by Activating set and Deactivator except in case of the Hader bar. Simultaneously strains were recorded with the strain smart program in strain P-6000 series (Measurement group, Raleigh, USA). The maximum axial load was calculated and compared with each other. The results were as follows: 1. The amount and the timing of the maximum axial loads were different between the right and left implant in all attachment systems. 2. The retention of bar attachment except Hader bar could be adjusted but the controllability was different among the attachment systems. 3. The more the axial load, the higher the retention with Hader bar and Dolder bar without spacer. but the tendency of increase was not shown with round bar and Dolder bar with spacer.

  • PDF

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Analytical Study on the Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.35-44
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge columns under varying axial load is verified by comparison with reliable experimental results.