• Title/Summary/Keyword: axial gap

Search Result 251, Processing Time 0.022 seconds

Actuating Characteristics of Electrostatic Micro-motors

  • Kim, Young-Cheol;Kim, Byung-Ok
    • 연구논문집
    • /
    • s.33
    • /
    • pp.53-65
    • /
    • 2003
  • Electrostatic micro-motors can be divided into three classes: (i) salient type side drive motor, (ii) radial gap type wobble motor, (iii) axial gap type wobble motor. The working mechanism, torque evaluation, fabrication, and operational characteristics of each micro motors are compared. It is proved that axial gap type wobble motor has the bigger generating torque than that of the other type. The gear ratio of wobble motors increases the driving torque at the cost of a decreasing angular speed and decreases the friction because of the rolling motion instead of sliding at the bearing. Techniques for characterizing micro-motors performance are presented.

  • PDF

Design of Magnet Shape for Axial-Flux Type Permanent-Magnet Synchronous Generator with Dual Air-Gap (횡자속형 2중 공극 영구자석 동기발전기의 마그네트 형상설계)

  • Choi K.H.;Kim K.S.;Jin M.C.;Hwang D.H.;Bae S.W.;Kim D.H.;Ro C.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.828-831
    • /
    • 2003
  • This paper presents a novel design technique and characteristic analysis of Magnet for dual air-gap axial-flux type permanent-magnet synchronous generator. The process of magnet design is applied to the motor design and steady state analysis considering output voltage waveforms and magnetic flux waveforms. Design and construction of an axial-flux permanent-magnet generator with power output at 60 [Hz], 300[r/min] is introduced. Finite-element (FE) method is applied to analyze magnet shape characteristics. The results of FE analysis show generator is feasible for use with dual air-gap axial-flux permanent- magnet synchronous generator.

  • PDF

A Study of rotor-stator interaction in an axial fan (축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구)

  • Rim, In-Won;Seon, Ho-Su;Joo, Won-Gu;Cho, Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

Effect of Piston Ring Gap on the Axial Motion of Piston Ring and Oil Consumption (피스톤 링갭이 링거동 및 오일소모에 미치는 영향)

  • 민병순;김중수;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.197-204
    • /
    • 1997
  • In order to investigate the relationship between the ring gap ratio and oil consumption, the axial motion of piston ring was measured by capacitance technique. The pressures of each land and the motions of each ring were calculated by orifice-volume method in which it is assumed that the ring gaps are the only gas leakage paths. The calculated results were compared with the measured ones. Consequently, it is known that the increase of ring gap ratio has the effect of lifting the first ring. The calculated results were roughly in accordance with those measured. Therefore, it is possible to predict the effect of design variables on the pattern of ring motion. It is known that the lift off of first ring accompanied by the increase of ring gap ratio make rise of oil consumption.

  • PDF

Analysis of Torque and Force Distribution of Axial-Gap Type Wobble Moto (축방향 공극형 Wobble 모터의 토오크 특성 및 힘 분포 해석)

  • Woo, Sung-Bong;Lee, Eun-Woong;Yun, Seo-Jin;Kim, Sung-Jong;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.9-11
    • /
    • 1999
  • This paper presents the problems of design and theoretical model of electrostatically driven axial-gap type wobble motor. The motor design benefits from large axial rotor-to-stator overlap and large gear ratios, and motor designs with rotor radii of 50 and $100{\mu}m$ are capable of generating torques in the [nNm] range at high electrostatic fields. Because of the large gear ratio, smaller angular steps and lower rotational speed are obtained, compared to radial-gap motor design. Aspects like gear ratio, torque generation, excitation schemes and torque coverage, normal forces, friction are addressed.

  • PDF

A numerical study on the flow in an eccentric annulus (편심 환형관내 유동에 대한 수치 해석적 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1863-1868
    • /
    • 2004
  • The present study concerns a computational study of fully developed laminar flow of a Newtonian fluid through an eccentric annulus with a combined bulk axial flow and inner cylinder rotation. This study considers the identical flow geometry as in the calculation of Escudier et $al.^{(3)}$ An unexpected feature of the calculations for eccentricity ${\varepsilon}$)0.7 is the appearance of a second peak in the axial velocity, located in the narrowing gap. The distribution of the axial component of the surface shear stress has a maximum in the narrowing gap and a minimum in the widening gap.

  • PDF

Analysis of axial magnetic field of coil type vacuum interrupter electrodes by comparing effective area at mid-gap plane (유효면적비교를 통한 COIL TYPE 진공인터럽터 전극의 측자계 분석)

  • Kim, Byoung-Chul;Yoon, Jae-Hun;Hoe, Jun;Kang, Seong-Wha;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.147-148
    • /
    • 2008
  • In this paper, we calculated the axial magnetic field at mid-gap plane between upper and lower electrode in vacuum interrupter by means of commercial finite element method Maxwell 3D and compared on the basis of "effective area" criterion. The models used in this paper are coil type(axial magnetic field) vacuum interrupter electrodes which have different numbers of coil segment. We used Dr. Schulmann's experimental equation which indicates minimum critical value of axial magnetic field to diffuse arc.

  • PDF

A Method of Axial Thrust Control in Centrifugal Pump (원심펌프의 축추력 제어법에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • In order to control and balance axial thrust of turbo machine, many types of balancing devices are used but most of them are complicated and sometimes cause troubles. In this study, a very simple device of using shallow grooves mounted on a casing wall, known as "J-Groove", is proposed and studied experimentally and theoretically. The result shows that 70% of axial thrust in an industrial 4-stage centrifugal pump can be reduced at the best efficiency point. Moreover, the analytical method of "interfered gap flow" is established and a simple formula which can determine the optimum dimension of groove and its location is proposed.

Integrated Driver for the Full Rotation Using Six-axial Forces by the Induction Type of Axial-gap Motor (유도형 축방향 모터의 6축력 제어를 이용한 대회전 구현용 통합 구동기)

  • Jung Kwang-Suk;Lee Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.798-804
    • /
    • 2006
  • To overcome the limited relative uncertainty and work range of the existing planar stage and the bulk structure of the contact-less motor for rotation, the novel operating principle to realize the precise rotation is suggested. It uses the two-axial vector forces, normal force and thrust force, of three-induction type of axial motors located $120^{\circ}$ apart, resulting in the contact-free rotation of the mover. Firstly in this paper, the magnetic forces across the air gap are modeled and simulated under the various conditions. It clarifies the feasible range of the derived solution. And the algorithm compensating the strong cross couple between the forces and the control inputs; generally AC magnitude and slip frequency, is given to realize the independent control of six axes. Finally, for the successfully implemented system, the round test and the micro step test results are given.

Characteristic analysis of axial-flux type Brush Less DC motor (Axial-flux type BLDC 전동기의 특성해석)

  • Park Su-Beom;Lee Shang-Ho;Nam Hyuk;Hong Jung-Pyo;Lee Jeong-jong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1058-1060
    • /
    • 2004
  • This paper presents a characteristic analysis method for an air gap flux density of axial-flux type brushless dc (BLDC) motor. The magnetic flux density for the torque, and vertical force characteristics is calculated by using analytical method, based on the concept of magnetic charge. The calculated results by the presented method is compared with those by 3 dimensional finite element method (3D FEM). Using the presented method, the characteristics of single and double sided axial-flux type BLDC motors are investigated through distributions of air gap flux density.

  • PDF