• 제목/요약/키워드: axial force-bending moment interaction equation

검색결과 9건 처리시간 0.02초

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용 (Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges)

  • 최동호;유훈;이범수;조선규
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 강사장교의 거더와 주탑은 축력과 모멘트를 동시에 받는 보-기둥 부재이기 때문에 단일 힘을 고려하는 일반도로교의 내하율 산정식은 강사장교의 거더와 주탑에 적용할 수 없다. 현재, 사장교의 거더와 주탑에 적용 가능한 이론적인 내하율 산정방법은 아직 정립되지 않았다. 본 논문에서는 축력과 모멘트를 동시에 받는 부재의 상관공식을 적용하여 강사장교 거더와 주탑의 내하율을 산정하기 위한 식을 제안하였다. 영향선해석을 수행하여 각 부재에 압축력 최대, 정 및 부모멘트 최대의 경우에 활하중 재하 형태를 결정하였고 각 부재의 내하율 산정절차를 정리하였다. 제안된 내하율 산정방법의 타당성을 검증하기 위하여 실교량 모델인 돌산대교에 대한 적용예를 제시하였다. 일반도로교의 내하율 산정식은 돌산대교 거더와 주탑의 내하율을 과대평가 하였으며, 제안된 내하율 산정식은 축력과 모멘트를 동시에 지지하는 사장교 거더와 주탑의 거동을 적절히 반영하였다.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung;Wei-Ting Hsu
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.517-526
    • /
    • 2024
  • Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.

축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용 (Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems)

  • 신호성;김진욱
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.27-34
    • /
    • 2020
  • 구조물에 대한 축대칭 쉘요소는 지반과 구조물의 상호작용에 대한 유한요소해석에서 효율성과 정확성을 높이게 된다. 본 논문에서는 Kirchhoff 이론에 근거한 축대칭 쉘요소의 힘평형 방정식과 모멘트 평형 방정식을 유도하였다. 축방향 변형에 대한 지배방정식은 등매개변수 형상함수를 이용한 Galerkin 수식화를 수행하고, 휨에 대한 지배방정식은 고차의 형상함수를 이용하였다. 개발된 축대칭 쉘요소는 지반과의 연계해석을 위하여 지반해석 유한요소 프로그램인 Geo-COUS에 결합하였다. 원형판과 액체 저장 탱크에 대한 예제해석을 통하여 개발된 요소의 정확성을 확인하였다. 그리고 축대칭 쉘요소에 대한 에너지 평형방정식을 제시하였다.

압축과 휨을 동시에 받는 강관 T조인트 극한강도 상호작용 (Ultimate Strength Interaction of Steel Tubular T-Joint Subjected to Concurrent Action of Compression and Bending)

  • 김경식
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.298-303
    • /
    • 2016
  • 수직 및 수평의 원형단면 강관으로 구성된 공간프레임 타워는 강재량을 줄이면서도 풍하중의 영향을 완화시킬 수 있는 장점으로 다양한 목적으로 널리 적용되고 있다. 이러한 공간프레임 타워를 하나의 타워구조로 거동하게 하기 위해서는 수직 강관과 수평 강관의 연결부인 강관조인트의 강도 확보가 중요하다. 본 연구에서는 압축과 휨이 동시에 작용하는 강관 T조인트의 강도평가를 수행하였다. AISC, Eurocode3, ISO 19902의 3가지 강관조인트 설계기준을 검토하고, 주강관과 지강관의 세장비를 주요 매개변수로 한 비선형 유한요소해석을 통하여 축력과 모멘트에 대한 극한강도 상호작용을 설계식으로 제안하였다.

Experimental study on hysteretic properties of SRC columns with high steel ratio

  • Lu, Xilin;Yin, Xiaowei;Jiang, Huanjun
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.287-303
    • /
    • 2014
  • 8 steel reinforced concrete (SRC) columns with the encased steel ratio of 13.12% and 15.04% respectively were tested under the test axial load ratio of 0.33-0.80 and the low-frequency cyclic lateral loading. The cross sectional area of composite columns was $500mm{\times}500mm$. The mechanical properties, failure modes and deformabilities were studied. All the specimens produced flexure failure subject to combined axial force, bending moment and shear. Force-displacement hysteretic curves, strain curves of encased steels and rebars were obtained. The interaction behavior of encased steel and concrete were verified. The hysteretic curves of columns were plump in shapes. Hysteresis loops were almost coincident under the same levels of lateral loading, and bearing capacities did not change much, which indicated that the columns had good energy-dissipation performance and seismic capacity. Based on the equilibrium equation, the suggested practical calculation method could accurately predict the flexural strength of SRC columns with cross-shaped section encased steel. The obtained M-N curves of SRC columns can be used as references for further studies.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • 제5권4호
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.