• Title/Summary/Keyword: axial flows

Search Result 181, Processing Time 0.022 seconds

Steady Stokes flow analysis using Axial Green's Function Formulation (축그린함수법을 이용한 정상상태의 스톡스유동해석)

  • Kim, D.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.256-258
    • /
    • 2011
  • Using the axial Green's function method for Steady Stokes flows, we introduce a new pressure correction formula to satisfy the incompressibility condition, in which the pressure is related to the integral of the second order derivatives of the velocity. Based on this formula, we propose the iterative method for solving the Stokes flows in complicated domains. Even if the domain is complex, this method maintains the second order of convergence for the velocity.

  • PDF

Effects of geometric conditions of blade on Performance of Axial Pan (익형의 기하학적 조건에 따른 축류팬의 성능에 관한 연구)

  • Ahn E. Y.;Kim J. W.;Jeongng E. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.25-29
    • /
    • 2005
  • Axial fan is used for the supplement of large amount of flows. Axial blowers show relatively high efficiency of the system. The present model of axial fan is for cooling a condenser in an air-conditioning unit that exhibits tendency toward compact size. In order to realize the compact model, the width of an axial blade should be cut down in axial distance. Main interest lies on the performance of the axial blowing system with blades having shorter chord length. One of the important design parameters for axial fan is the shape of the blades of it. Design of blades includes the cross-sectional shape and its dimension, including the chord length. We consider two types of blades; one is NACA airfoil with normal chord length and the other is with shortening chord length by $10\%$ of normal airfoil. Axial blower with the modified blades is essential for the compact model of an air-conditioner. The other design parameters are same in the two cases. Using a wind tunnel follows ASHRAE standards carries out evaluation of performance of the system. Detail of flows around the blades is prepared by velocity measurements using PIV. According to performance estimation, the axial blower with short chord blade show quite close to the performance results, including flow rate and pressure rise, of the standard one. The reason of the two similar results is that the flowpatterns depend on Reynolds number based on the chord length of a blade. In this investigation, the critical chord length is found, in which the flows near the airfoil are so unstable and the performance of the system is decreased. A series of figures is for the detail information on the flow.

  • PDF

Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct (곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

Numerical Analysis of Flows on H-S and B-B Flow Surfaces in Axial-Flow Tubomachine (軸流터어보機械 의 H-S面 과 B-B面상 의 流動 의 數値解析)

  • 조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.153-160
    • /
    • 1983
  • The flows in an axial flow turbomachine are calculated numerically in the two sets of flow surfaces of H-S and B-B surfaces assuming that the flow is axisymmetric. The calculation is performed by regarding the governing equations as the quasi-Poisson's equations and using the finite element method for the flow regions divided into triangular elements. The results of numerical calculation agree comparatively well with the experimental results and it has been found that the distribution of an axial velocity component at the rotor exit is not necessarily uniform under the influences of the inlet guide vanes and the front shape of the hub even if the rotor is designed by the free-vortex theory. Also it has been found that the existence of the optimum value of the blade number can be estimated from the results of calculation of deviation angles at rotor exit if we consider the viscous flow-loss, and that the flows of B-B surfaces are affected very sensitively by the degree of satisfaction of Kutta condition.

A Study on the Flow Characteristics of Developing Transitional Steady Flows in a Curved Duct by Using Laser Doppler Velocimeter (I) (곡관덕트에서 LDV를 이용한 천이정상유동의 유동특성에 관한 연구(I))

  • 봉태근;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.96-101
    • /
    • 2000
  • In this paper, an experimental investigation of characteristics of developing transitional steady flows in a square-sectional 180 urved duct is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. The flow development is found to depend upon Dean number and curvature ratio. For transitional steady flows, the maximum velocity position of axial velocity profiles begins to incline toward the outer wall from $\phi$=$30^{\circ}$bended angle, velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

  • PDF

Performance and Flow Characteristics of Axial Fan (축류팬의 성능 평가 및 주변 유동 특성)

  • 김재원;정윤영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.972-981
    • /
    • 2000
  • Comprehensive work is done for flows by an axial fan by experimental research. The present model fan is used for air handling device for out-door unit of an air conditioner in home appliance. PIV(Particle Image Velocimetry) system and wind tunnel are adopted for measurements of flows and performance evaluation, respectively. Major experimental conditions are the installation depth of a fan into a bellmouth of it. Optimal position of a fan in an inlet guide tube is observed by examination of fan-performance and flows in both upstream and downstream of the fan. Consequently, in the case of the fan inserted in half depth into the inlet tube, the efficiency of fan shows its maximum value and flow patterns is also streamlined.

  • PDF

Experimental Investigation on Separated Flows of Axial Flow Stator and Diagonal Flow Rotor

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki;Jin, Yingzi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.223-231
    • /
    • 2009
  • Experimental investigations were conducted for the internal flows of the axial flow stator and diagonal flow rotor. Corner separation near the hub surface and the suction surface of stator blade are mainly focused on. For the design flow rate, the values of the axial velocity and the total pressure at stator outlet decrease between near the suction surface and near the hub surface by the influence of corner wall. For the flow rate of 80-90% of the design flow rate, the corner separation of the stator between the suction surface and the hub surface is observed, which becomes widely spread for 80% of the design flow rate. At rotor outlet for 81% of the design flow rate, the low axial velocity region grows between near the suction surface of rotor and the casing surface because of the tip leakage flow of the rotor.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.

A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor (축류 압축기에서의 선회실속에 관한 3차원 수치해석)

  • Choi, Min-Suk;Oh, Seong-Hwan;Ki, Dock-Jong;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

A Theoretical and Experimental Study on the Developing Turbulent Unsteady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류 비정상유동에 대한 이론과 실험적 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.643-651
    • /
    • 1998
  • Turbulent unsteady flows in the entrance region of a square duct are investigated with a hot-wire anemometer system. The velocity waveforms the mean and turbulence components of the axial velocity and the entrance length are obtained as a major characteristics of the developing turbulent unsteady flows. An inviscid flow theory is presented to describe the developing axial mean velocity profiles. A good agreement is seen between the measured and theoretically predicted values. The propagation of turbulence generated near the entrance of the square duct is satisfactorily approximated by an empirical correlation of the propagation of turbulence proposed so far. The local turbulence intensi-ty is found to be a little smaller in the accelerating phase than in the decelerating phase. The entrance length is about 60 times as large the hydraulic diameter.

  • PDF