• 제목/요약/키워드: axial dispersion

검색결과 52건 처리시간 0.019초

Developing numerical method to predict the removal of Microcystin-LR in a clear well

  • Yeo, Inhee;Park, Yong-Gyun;Kim, Dooil
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.173-179
    • /
    • 2018
  • Microcystin-LR, one of algal toxins induced by the eutrophication of a reservoir, is known to be harmful to human by adversely affecting our liver and brain. Hypochlorous acid is very efficient to remove Microcystin-LR in a clear well. The previous researches showed that CT, pH and temperature affected removal rate in batch tests. It was noted that hydrodynamic properties of clear well could also influence its removal rate. A mathematical model was built using an axial dispersion reactor model and software was used to simulate the removal rate. The model consisted of the second order differential equations including dispersion, convection, Microcystin-LR reaction with chlorine. Kinetic constants were obtained through batch tests with chlorine. They were $0.430{\times}10^{-3}L/mg/sec$ and $0.143{\times}10^{-3}L/mg/sec$ for pH 7.0 and 8.1, respectively. The axial dispersion reactor model was shown to be useful for the numerical model through conservative tracer tests. The numerical model successfully estimated the removal rate of Microcyctin-LR in a clear well. Numerical simulations showed that a small dispersion number, low pH and long hydraulic retention time were critical for higher removal rate with same chlorine dosage. This model could be used to optimize the operation of a clear well during an eutrophication season.

충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구 (Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor)

  • 신선경;김교근
    • 분석과학
    • /
    • 제10권1호
    • /
    • pp.66-74
    • /
    • 1997
  • 지름 2.54cm, 길이 10cm인 유리관에 tyrosinase(EC. 1.14.18.1)를 입자의 크기 $550{\mu}m$인 탄소에 고정시켜 충진하고, 페놀과 산소를 기질로 사용하여 tyrosinase의 반응 특성을 조사하기 위해 axial dispersion 모델을 제안하였다. 본 논문에서 페놀의 농도는 55.5mM로 고정시키고 산소(2.7ppm, 5.4ppm, 그리고 9.5ppm)와 유속 (1~3mL/s)을 변화시키면서 탄소에 고정된 tyrosinase의 반응을 관찰하였다. 또한, Damkolher수를 계산하고 분산 특성과 식으로부터 효소반응 속도 및 분산의 영향을 예측하기 위해 수치적 해석을 하였다. 연구 결과 물질저항은 주로 외부 전달과 내부확산이었으며, 제안된 모델에서 Biot수는 64.25였다. 페놀은 1.0mL/s 정도의 느린 속도에서 산소의 농도가 높을수록 높은 전환율을 나타내었다. 한편, axial dispersion 모델과 plug flow 모델의 비교에서는 모두 같은 전환율을 나타내어 axial dispersion 모델이 반응속도와 무관함을 알 수 있었다.

  • PDF

$N_2$기체의 흐름에 주입된 $CO_2$기체의 확산 및 분산 (Diffusion and Disperision of Injected $CO_2$Gas Into the $N_2$Gas Flow)

  • 김유식;안대영
    • 한국화재소방학회논문지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2002
  • Diffusion and dispersion of injected $CO_2$gas into the $N_2$ gas flow are complex. In the packed column with porous particles the axial dispersion and the extra-particle mass transport as well as the intra-particle mass transport are involved. The pulse spreads by stationary diffusion during the period of arrested flow. Hence, the effect of axial dispersion, and of entrance and exit, as well as that of intraparticle convection should be eliminated during the period. The effective diffusivity was determined experimentally by using the gas chromatography, which is to arrest the gas flow during the period after injecting the pulse. This experiment method hasn't been used often in the field. Effective diffusivities are raised with temperature increasing, and it is quite satisfied com-pared to literature values. In this study, the calculated data of gaseous chemical for extinguish fires could be helpful to appreciate several physical phenomenons. Also, it could be expected that, the calculated data of this study might be very useful for development of excellent gaseous chemical for extinguish fires and improvement of its efficiency.

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Modeling and analysis of an LDPE autoclave reactor with axial dispersion

  • Park, Seung-Koo;Wi, Jeong-Ho;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1693-1698
    • /
    • 1991
  • An axial dispersion model is developed for the slim reactor employed in the LDPE autoclave process so that imperfect mixing caused by large L/D ratio (10-20) may be quantified by Peclet number. The model is then used to investigate the effect of mixing on the reactor performance represented by the monomer conversion, the reactor temperature, the molecular weight, and the polydispersity. In addition, the existence of steady state multiplicity is identified with the initiator feed concentration or the feed temperature as the bifurcation parameter. The effects of the initiator feed concentration and the feed temperature are also examined.

  • PDF

지파 도파관을 이용한 마이크로파 출력 실험 연구 (A Study of Microwave Output Experiment of Slow Wave Waveguide)

  • 김원섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.465-468
    • /
    • 2009
  • The dispersion relation and the characteristic of propagation are measured. The measurements of the dispersion relation are observed by a plunger method employed in slow plasma density by pumping microwaves on the axis are observed in plasma loaded slow wave structure. In case of small incident microwave powers the well known plasma density cavity are observed. At the axial positions of minimal radius in the waveguides, the maxima og the electron density, the plasma potential and the RF electric field are observed in cases of high-power microwaves.

이종 접합된 광섬유에 있어서 편광모드분산 특성에 관한 연구 (A Study on Polarization Mode Dispersion Properties of Concatenated Optical Fibers)

  • 이청학;류부형;김기대;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2456-2458
    • /
    • 1999
  • The polarization mode dispersion (PMD) that restricts the transmission bandwidth was investigated in standard long single mode fiber which optimized at 1.3${\mu}m$. Although fiber has perfect circular symmetry, each optical fiber has different refractive index profiles. The investigation of PMD with random mode couplings were conducted in three kinds of fiber by the time-domain interferometric method. By using two manufacturing methods, MCVD(Modified Chemical Vapor Deposition) method and VAD(Vapor Phase Axial Deposition) method, the property of mechanical asymmetric lateral pressure, bending and twisting induced polarization mode dispersion were measured. The concatenated optical fibers were compared with other types.

  • PDF

Parameter Estimation of Perillyl Alcohol in RP-HPLC by Moment Analysis

  • Row Kyung Ho;Lee Chong Ho;Kang Ji Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권1호
    • /
    • pp.16-20
    • /
    • 2002
  • Parameter estimations were made for the reversed-phase adsorption of perillyl alcohol (POH), a potent anti-cancer agent, on octadecylsilyl-silica gel (ODS). The average particle diameter of ODS was about $15\;{\mu}m$, and the particles were packed in the column $(3.9\;\times\;300mm)$. The mobile phase used was a mixture of acetonitrile and water, in which the acetonitrile ranged between 50 and $70\;(v/v\;\%)$. The first absolute moment and the second central moment were determined from the chromatographic elution curves by moment analysis. Experiments were carried out using POH solutions within the linear adsorption range. The fluid-to-particle mass transfer coefficient was estimated using the Wilson-Geankoplis equation. The axial dispersion coefficient and the intra particle diffusivity were determined from the slope and intercept of a plot of H vs $1/u_0$, respectively. The contributions of each mass-transfer step were axial dispersion, fluid-to-particle mass transfer, and intraparticle diffusion.