• 제목/요약/키워드: axial direction

검색결과 899건 처리시간 0.025초

냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구 (A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

Structural Integrity Evaluation of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Park Youn Won
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.327-337
    • /
    • 2004
  • It is commonly required that tubes with defects exceeding $40\%$ of wall thickness in depth should be plugged; however, this criterion is too conservative for some locations and for some types of defects. Many studies have been done with the aim of developing an alternative plugging criteria, and these studies have shown that steam generator tubes with a certain range of axial through-wall cracks could remain in service without any safety or reliability problems. However, these studies have been limited, thus far, to consideration of single cracked tubes, necessitating a study on multiple cracks, which are commonly found. A crack coalescence model applicable to steam generator tubes with two collinear axial through-wall cracks was proposed in the previous study. In this paper, the investigation is extended to the parallel axial cracks spaced in a circumferential direction, because parallel axial cracks are more frequently detected during in-service inspections than collinear axial cracks. Interaction effects between two parallel cracks are evaluated by performing elastic and elastic-plastic finite element analyses.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구 (An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades)

  • 장택순;허진혁;문승재;이재헌;유호선;임윤철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.145-150
    • /
    • 2008
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}C$, $-16^{\circ}C$, $-21^{\circ}C$, $-26^{\circ}C$, $-31^{\circ}C$ and $-36^{\circ}C$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}C$ has been selected to get largest flow rate at backward flow situation.

  • PDF

CNC 제어 가변단면 압출기 개발 (CNC Extruder for Varied Section Products)

  • 최호준;임성주;신희택;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2007
  • It is very important that there are saving resource and energy in the future as well as in these day. Weight saving of structural parts, which are formed by extrusion, plays a key role in manufacturing field. Extruded aluminum parts' cross sections are constant in the axial direction by conventional extrusion method. Especially these aluminum parts used in the car need other processes to vary the cross section in the axial direction. Thus, applications of these parts are limited by high cost. if the cross section of the parts is variable by only extrusion, application of extruded aluminum parts will more increase. Therefore, a new CNC extruder which can control the section area of a car part was invented the nation's first. Using the extrusion machine, the experiment was performed to validate the workability.

  • PDF

TIME DELAYED CONTROLLER를 이용한 유압 시스템의 위치 제어

  • 진성무;현장환;이정오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.204-208
    • /
    • 2001
  • Position control of the electro-hydraulic servo indexing system in a flexible forging machine was investigated Flexible forging machine forges an axial type workpiece in the radial direction as well as in the axial direction. The role of the indexing system is to rotate a workpiece fast and accurately to a desired position for continuous shaping. Since the inertia of a workpiece changes during each forging step, a control technique which is robust to inertia variation should be adopted to the position control of the workpiece. In this study, time delayed control technique is applied to the servo system. Time delayed control method does not depend on estimation of specific parameters. Rather, it depends on the direct estimation of a function representing the effect of uncertainties. Direct estimation is accomplished using time delay and the gathered information is used to cancel the unknown dynamics is accomplished using disturbances simultaneously. Experimental result show that the time delayed controller is robust to inertia variation of the load, and satisfactory performance on the sposition accuracy is obtained compared to the contentional feedback control.

원통연삭 실험자료를 이용한 트래버스 연삭공정중의 형상예측 (Prediction of Form Accuracy during Traverse Grinding of Slender Workpiece Using the Cylindrical Prunge Grinding Data)

  • 박철우;이상조
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.174-183
    • /
    • 2000
  • Non-Parallelism the axial direction occurs during grinding process of long slender shafts. The reason for the axial error is due to elastic deformation of the components, accumulation phenomenon of the grinding and wheel wear during the grinding process. The accumulation phenomenon, the size generation mechanism and the wheel wear process during traverse grinding result in complicated process at each step on the wheel surface. The grinding system stiffness obtained from the stiffness of the center on the tailstock and the workpiece varing according to the relative position of the wheel and the workpiece. Further more, the value of wheel wear increases as the grinding process advances. The above mentioned issues make the shape generation process during traverse grinding quite complicated. This research analyzes the shape generation process in the direction of the work spindle. First, the formulation of the grinding system stiffness was conducted and the simulation analysis method of the traverse grinding was established. Also, a measuring system for assessing the dimensinal accuracy of the workpiece has been developed.

  • PDF

오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석 (Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.

각종 매설관의 강제진동거동에 관한 연구 (A Study on the Forced Vibration Responses of Various Buried Pipelines)

  • 정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1334-1339
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a forced vibration analysis. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

Convex형 권선배치방식을 취한 권철심변압기의 충격파절연설계에 관한 연구 (Study on Insulation Design of Surge Voltages for Convex Winding type Ribbon Core Transformer)

  • 황영문;조철제;김중한
    • 전기의세계
    • /
    • 제22권3호
    • /
    • pp.13-24
    • /
    • 1973
  • In this report, as a method to solve the problems on impulse insulation coordination in ribbon core transformer owing to it's BIL stepping up, new design to alter winding distribution of multiple-layer concentric winding to Convex type winding is proposed. The main focus of this method is to settle the weakness of axial direction insulation strength and as a result of theoretical analysis through experiment of model transformers, the following conclusions are obtained; (a) As the electric loadings in a design which increases by strengthenning axial direction insulation endurance in presently avarilable transformers owing to it's BIL stepping up can be restricted in Convex type winding, reasonable design will be suited to the transformer with higher BIL. (b) Convex type winding is a very improved insulation design in respect of insulation coordination because it has shield plate effect to even impulse oscillation. (c) There is a disadvantage to cause leakage flux to increase in Convex type winding, however, the constancy of electric loadings in a design in spite of BIL stepping up restricts the increase of leakage flux to some extent.

  • PDF