• Title/Summary/Keyword: axial direction

Search Result 901, Processing Time 0.034 seconds

A Study on the Driving System Using Ball Screw (볼나사를 이용한 이송계에 관한 연구)

  • 이상조;남원우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.981-984
    • /
    • 1995
  • The feed system using ball screw is constructed by ball screw, support bering and LM guide, and servo system for driving ball screw. AC servo motr drives ball screw which was connected by coupling. In this study, a new axial direction dynamic modeling of ball screw driving system was developed, and forced vibraition test using the impact hammer was experimented. The simulation result is compared with experimental result, which defines the reliability of mathematical modeling.

  • PDF

Finite Element Analysis of Temperature Distribution and Thermally Caused Deformation in Ventilated Disk Brakes

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.150-155
    • /
    • 1995
  • In order to analyze the thermal effects of the rotor models, the finite element technique was used in this study. The length of the hat was investigated as a design parameter. At the start of each brake application the disk surface temperature rapidly increases to a maximum value and then decays due to external cooling and thermal conduction to the hat. The calculated results indicate that the long length of the hat shows the minimum deformation in axial direction, which is related to the thermal problems, coned wear, vibration and noise.

Shock Analysis of Magnetic Rotating Disk and Head (자기 회전 디스크와 헤드의 충격해석)

  • 장영배;박대경;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

Nonlinear Dynamic Analysis of Fiber Movement

  • Shen Danfeng;Ye Guoming
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.191-194
    • /
    • 2006
  • This paper adopts nonlinear vibration method to analyze the fluctuation process of fiber movement. Based on Hamilton Principle, this paper establishes differential equation of fiber axial direction movement. Using variable-separating method, this paper separates time variable from space variable. By using the disperse movement equation of Galerkin method, this paper also discusses stable region of transition curve and points out those influencing factor and variation trend of fiber vibration.

Improve the Gamma variation by monitoring the angle of the polarizer absorption axis

  • Wu, Chun-Wei;Huang, Chiu-Jung;Hu, Cheng-Chung;Cheng, Yao-Li
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.293-296
    • /
    • 2007
  • Gamma curve is one of the most important optical performance characteristics of a liquid crystal display. we present investigations on the relationship between gamma and polarizer. The gamma curve is affected by the angle of the polarizer absorption axis. When the crossed angle between the two polarizers turns larger, gamma values will decrease. The gamma variation caused from each polarizer variation could be improved by monitoring and controlling the axial direction of the polarizers.

  • PDF

Numerical Analysis on Heat Transfer and Fluid Flow Characteristics of Traction Motor for Electric Car (전동차용 견인전동기의 열유동 특성에 관한 전산해석)

  • 남성원;김영남;채준희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.137-143
    • /
    • 1998
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of traction motor for electric car SIMPLE algorithm based on finite volume method is used to make linear algebra equation. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the size of hole in stator core. In the case of high rotational speed of rotor, temperature difference along the axial direction is more decreased than that of low rotational speed.

  • PDF

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

Experimental Studies on Swirling Flow in a Vertical Circular Tube

  • Chang, Tae-Hyun;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.907-913
    • /
    • 2011
  • Swirling flows are related to the spiral motion in the tangential direction in addition to the axial and radial direction using several swirl generators. These type of flows are used in combustion chambers to improve flame stability, heat exchanger to enhance heat transfer coefficients, agricultural spraying machines and some vertical pipes to move slurries or transport of materials. However, only a few studies three dimensional velocity profiles in a vertical pipe have been reported. In this present paper, 3 dimension particle image velocimetry(PIV) technique was employed to measure the velocity profiles in water along a vertical circular pipe with Reynolds number from 6000 to 13,000. A tangential inlet condition was used as the swirl generator to produce the required flow. The velocities were measured with swirling flow in the water along the test section using the PIV technique.

The Evaluation of GFRP Pipe by NDT Methods (비파괴시험에 의한 GFRP Pipe의 평가)

  • Lee, J.S.;Cho, K.S.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • It is desirable to develop the effective NDT techniques to evaluate the strength of composite structures. In this study several of acoustic NDT techniques were applied to investigate useful parameters for evaluating the filament wound GFRP structures and following results were obtained. 1. Propagation velocity of stress wave to axial direction in the filament wound GFRP pipe depends on the effective modulus along the propagation direction and source location was parcticable from the a measured velocities. 2. By the application of acoustic emission techniques to GFRP pipe during hydraulic test, it was proven to be possible to detect the damage initiating pressure which could be evaluated nondestructively through the measuring of stress wave energy factor(SWEF). 3. The final failure pressure of GFRP was greatly influenced in the presence of pass through defects, and void-like defects were more dangerous than the laminar type defects.

  • PDF

Buckling load optimization of laminated composite stepped columns

  • Topal, Umut
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.107-111
    • /
    • 2017
  • This paper deals with critical buckling load optimization of symmetric angle-ply laminated stepped flat columns under axial compression load. The design objective is the maximization of the critical buckling load and the design variable is the fiber orientations in the layers of the laminates. The classical laminate plate theory is used for the finite element solution of the laminated stepped flat columns. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is exploited. Finally, the optimization results are presented for width ratios (b/B), ratios of fillet radius ($r_1/r_2$), aspect ratios (L/B) and boundary conditions. The results are presented in graphical and tabular forms and the results are compared.