• 제목/요약/키워드: axial direction

Search Result 901, Processing Time 0.02 seconds

Vertical coherence functions of wind forces and influences on wind-induced responses of a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.;Ding, Q.S.
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.119-158
    • /
    • 2015
  • The characteristics of the coherence functions of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on the Shanghai World Trade Centre - a 492 m super-tall building with section varying along height are studied via a synchronous multi-pressure measurement of the rigid model in wind tunnel simulating of the turbulent, and the corresponding mathematical expressions are proposed there from. The investigations show that the mathematical expressions of coherence functions in across-wind and torsional-wind directions can be constructed by superimposition of a modified exponential decay function and a peak function caused by turbulent flow and vortex shedding respectively, while that in along-wind direction need only be constructed by the former, similar to that of wind speed. Moreover, an inductive analysis method is proposed to summarize the fitted parameters of the wind force coherence functions of every two measurement levels of altitudes. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well. Later, the influences of coherence functions on wind-induced dynamic responses are analyzed in detail based on the proposed mathematical expressions and the frequency-domain method of random vibration theory.

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

The Effect of Swirl Number on the Flow Characteristics of Flat Flame Burner (선회도에 따른 평면 화염 버너의 유동특성)

  • Jang, Yeong-Jun;Jeong, Yong-Gi;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.997-1004
    • /
    • 2001
  • Burner of Flat Flame type expects the uniform flame distribution and NOx reduction. The characteristics of Flat Flame Burner become different according to swirl number in the burner throat. Experiments were focused on swirl effect by four types of swirler with different swirl numbers (0, 0.26, 0.6 and 1.24). It shows many different flow patterns according to swirl number using PIV(Particle Image Velocimetry) method. The flow of burner with swirler is recirculated by pressure difference between its center and outside. Recirculated air makes stable in flame, and reduced pollutant gas. In case of swirl number 0, main flow passes through axial direction. As swirl number increased, The backward flow develops in the center part of burner and Flow gas recirculates. This is caused by radial flow momentum becomes larger than axial flow by swirled air and the pressure at center drops against surrounding. As swirl number increases, the radial and axial velocity was confirmed to be larger than low swirl numbers. And turbulence intensity have similar pattern. The CTRZ(Central Toroidal Recirculation Zone) is shown evidently when y/D=1 and S=1.24. The boundary-layer between main flow and recirculated flow is shown that the width is seen to be decreased as swirl number increased.

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

A Numerical Investigation of Flow and Performance Characteristics of a Small Propeller Fan Using Viscous Flow Calculations

  • Oh, Keon-Je;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.386-394
    • /
    • 2002
  • The present work is aimed at investigating an unusual variation in flow and performance characteristics of a small propeller fan at low flow rates. A performance test of the fan showed dual performance characteristics, i.e., radial type characteristics at low flow rates and axial type at high flow rates. Dual performance characteristics of the fan are numerically investigated using viscous flow calculations. The Finite Volume Method is used to solve the continuity and Navier-Stokes equations in the flow domain around a fan. The performance parameters and the circumferentially averaged velocity components obtained from the calculations are compared with the experimental results. Numerical values of the performance parameters show good agreement with the measured values. The calculation simulates the steep variations of performance parameters at low flow rates and shows the difference in the flow structure between high and low flow rates. At a low flow coefficient of $\Phi$=0.2, the flow enters the fan in an axial direction and is discharged radially outward at its tip, which is much like the flow characteristics of a centrifugal fan. The centrifugal effect at low flow rates makes a significant difference in performance characteristics of the fan. As the inlet flow rate increases, flow around the fan changes into the mixed type at $\Phi$=0.24 and the axial discharge at $\Phi$=0.4.

A Study on Stress Analysis of Orthotropic Composite Cylindrical Shells with a Circular or an Elliptical Cutout

  • Ryu, Chung-Hyun;Lee, Young-Shin;Park, Myoung-Hwan;Kim, Young-Wann
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.808-813
    • /
    • 2004
  • The stress analysis on orthotropic composite cylindrical shells with one circular or one elliptical cutout subjected to an axial force is carried out by using an analytical and experimental method. The composite cylindrical shell governing equation of the Donnell's type is applied to this study and all results are presented by the stress concentration factor. The stress concentration factor is defined as the ratio of the stress on the region around a cutout to the nominal stress of the shell. The stress concentration factor is classified into the circumferential stress concentration factors and the radial stress concentration factors due to the cylindrical coordinate of which the origin is the center of a cutout. The considered loading condition is only axial tension loading condition. In this study, thus, the maximum stress is induced on perpendicular region against axial direction, on the coordinate. Various cutout sizes are expressed using the radius ratio, (equation omitted), which is the radius of a cutout over one of the cylindrical shell. Experimental results are obtained using strain gages, which are attached around a cutout of the cylindrical shell. As the result from this study, the stress concentration around a cutout can be predicted by using the analytical method for an orthotropic composite cylindrical shell having a circular or an elliptical cutout.

A Study on Steady and Unsteady Behavior of Helium Jet in the Stationary Atmosphere (헬륨 기체분류의 정상적 비정상적 거동에 관한 연구)

  • Kim, B.G.;Suh, Y.K.;Ha, J.Y.;Kwon, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.34-45
    • /
    • 1993
  • This study aims to analyze the mixing characteristics of hydrogen considered as a new fuel for internal combustion engines. As the physical property of helium gas is similar to that of hydrogen, helium gas was used in this study. To analyze the steady and unsteady behavior of jet, helium gas was injected into the stationary atmosphere at the normal temperature and pressure. Concentration of helium gas in the center of jet flow is in inverse proportion with axial distance from the nozzle tip. This agrees with the free jet theory of Schlichting. The relative equation for dimensionless concentration to radial/axial distance the axial distance of potential core region, the cone angle a of the jet flow and the relative equation for arriving distance of the front of jet flow to the lapse of time are obtained. But free jet theory of Schlichting in the dimensionless concentration is not in agreement with the present experimental results of the distance of the radial direction. It needs more study. When the arrival frequency of jet flow is used as a parameter, the transition area changing from unsteady flow area into steady flow area becomes gradually wider downstream, but its ratio for the whole unsteady flow area gradually decreases.

  • PDF

Optimum Shape Design of the Spring to Improve the Loose-proof Performance of the Lock Nut (로크 너트의 풀림 방지 성능 향상을 위한 스프링의 최적 형상 설계)

  • Song, Hyun-Seok;Chung, Won-Sun;Jung, Do-Hyun;Seo, Young-Kyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The combination of a bolt and nut is the element most widely used for connecting machines and structures. When a load is repetitively applied in the direction right angle to the bolt axis after the bolt and nut is fastened, the nut gradually becomes loose. To solve this problem, in this study, a new type of the loose-proof nut, called a lock nut, is developed. The lock nut is equipped with a spring, and the spring increases the axial force of the bolt. Then, the connection force between the bolt and nut is also augmented. Three dimensional finite element models for the bolt and spring are generated, and the change of the axial force of the bolt while the bolt is being inserted into the spring is analyzed using MSC/Marc, a commercial finite element program. Finally, the optimum shape of the spring is found according to the response surface analysis methodology. The optimization result is verified by comparing the variation of the axial force of the bolt when the bolt is inserted to the initial and optimized spring.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

A Study on the Feeding System of Centerless Grinder for Machining the Ferrule (페룰가공용 무심연삭기 이송계 개발)

  • 박천홍;황주호;조순주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • In order to practicalize high precision centerless grinder for machining the ferrule, its feeding system is designed and tested. For satisfying the desired diametric tolerance and cylindricity of the ferrule, the feeding system is designed to have relatively high axial stiffness of 600 N/$\mu\textrm{m}$, high angular motion accuracy of 0.5 arcsec/mm in yaw direction and minimum resolution of 0.05 $\mu\textrm{m}$. A prototype of feeding system is built up with hydrostatic guideway and ballscrew. A linear scale with 0.05 $\mu\textrm{m}$ of resolution is used for position feedback. Experimental results show that the feeding system has the infinity of axial stiffness within the range of 1000 N and 0.3 arcsec/mm of yawing error. Also the feeding system shows obvious step response against 0.05 $\mu\textrm{m}$/step command without the lost motion or backlash. Although the vertical stiffness is reduced to 440 N/$\mu\textrm{m}$ by the elastic deformation of rail, it is good enough to use for machining the ferrule. From above, it is confirmed that the feeding system is applicable to centerless grinder for machining the ferrule.

  • PDF