• Title/Summary/Keyword: axial deformation link element

Search Result 2, Processing Time 0.016 seconds

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

Mixed-Mode Fracture Analysis of Quasi-Brittle Material Considering Fracture Energy (파괴에너지를 고려한 유사취성재료의 혼합모드 균열해석)

  • Lim, Yun-Mook;Kim, Moon-Kyum;Cho, Seok-Ho;Shin, Seung-Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, mixed-mode fracture behavior is simulated effectively through the numerical method using the axial defomation link elements which can predict the behavior of quasi-brittle material. The behavior of quasi-brittle material is modeled numerically using the exponential tension softening constitutive equation and verified by comparing with the result of published experimental result. In order to verify the mixed-mode fracture behavior through the developed numerical method, analysis of mode I is formulated and the result is compared with those of FEM first, and then mixed-mode analysis is analyzed and compared with existing theories and experimental data. Also the characteristics of fracture behavior is examined through the analysis of crack generation with respect to various mode mixity.