• Title/Summary/Keyword: axial compressor

Search Result 182, Processing Time 0.02 seconds

Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows (탠덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측)

  • Noh, Jun-Gu;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.27-34
    • /
    • 2004
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed difference according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical result. The numerical results agree with the measured data in respect of their tendency. It turned out that $0\%$ of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for $75\%$ case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

Conceptual Design of the Scroll Air Compressor for Fuel Cell (연료전지용 스크롤 공기압축기 개념설계)

  • Kwon, Tae-Hun;Ahn, Jong-Min;Kim, Hyun-Jin;Shim, Jae-Hwi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Potential application of the scroll type machine to air compressor for fuel cell has been studied. Among the seven configuration factors which determine scroll wrap profile, the wrap thickness and the orbiting radius were chosen as two independent variables to generate various scroll wrap profiles. A conceptual design practice was conducted for scroll air compressor for SOFC with power output of 2 kW. With larger wrap thickness and orbiting radius, base plate area of the orbiting scroll becomes smaller, so is the axial gas force acting on the base plate, resulting in reduced thrust loss in spite of larger friction velocity. Performance analysis on the designed model showed that its total efficiency was 64.4% with the mass flow rate per unit compressor input of 0.00905 kg/(s kW) for the wrap thickness of 3.5 mm and the orbiting radius of 3.0 mm.

A Study on Development of Pre-heat Treated Steel Head Bolt for Swashplate Type Compressor of Car Air-conditioner (차량용 에어컨 압축기의 선조질강 헤드 볼트 개발에 대한 연구)

  • Kim, Youngshin;Kim, Hokyoum;Hwang, Seungyong;Kim, Youngman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.588-595
    • /
    • 2016
  • This paper is a study on head bolts that are used in A/C compressors to reduce production cost and solve leak problems on the head bolt seat area that causes massive intermittent malfunctioning during production. In this study, the pre-heat treated steel, which was used as a material in the head bolt, eliminated the heat treatment process after forging. The pre-heat treated steel head bolts, which have 10 % lower tensile strength than the conventional SCM 435 head bolts, were selected after considering the results of creeping rupture properties, axial force, and stress concentration per tensile strength variation. Then, the performance test and the durability test with the A/C compressor that was assembled with the pre-heat treated steel head bolts were performed and verified. Based on the results, the pre-heat treated steel head bolts developed in this study saved 7.3 % in production cost by eliminating the heat treatment process and the logistics process. Furthermore, the leak problem on the head bolt seat area in the A/C compressor was addressed significantly on the mass production assembly line.

Application of Generalized Experimental Data Correlation in Centrifugal Compressor Design (원시험 데이터 일반화를 적용한 원심압축기 설계)

  • Cho, Gyu-Sik;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Mileshin, Victor I.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.38-43
    • /
    • 2000
  • Recently, KARI(Korea Aerospace Research Institute, Korea) and CIAM(Central Institute of Aviation Motors, Russia) have made an effort in developing a centrifugal compressor for a small gas turbine engine as part of a collaboration program. This compressor has been designed as a sub-component for an axial-centrifugal compression system for a small turbo-shaft engine aiming adiabatic efficiency higher than 0.81. The geometrical design requirement imposes restrictions to have high inlet hub-to-tip ratio and inlet swirl flow. In this study, the compressor has been designed using the generalized experimental data established from those compressors having pressure ratio of 3.7 to 5. From this generalized empirical correlation, desirable values of design parameters could be obtained. Subsequently, quasi-3D and 3D viscous flow analyses have been performed to ensure the adopted methodology. It is expected that the centrifugal compressor provides total pressure ratio of 4.89, corrected mass flow-rate of 1.64kg/sec, and adiabatic efficiency of 0.815 with inlet hub-to-tip ratio of 0.641. These relatively high total pressure ratio and inlet hub-to-tip ratio are the main distinctive features in this design. Besides, one of the main features of this centrifugal compressor is the adoption of a double-row bladed diffuser to effectively decelerate the transonic flow leaving the impeller. The compressor has been manufactured and will be tested in the near future.

  • PDF

Analyses and Measurements of Rotational Accuracy for Journal Shaft in a Scroll Compressor (스크롤 압축기 저어널 회전축의 궤적 계산 및 측정)

  • Park, Sang-Shin;Kim, Gyu-Ha;Lee, Jin-Kab
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2007
  • This paper presents measurement processes of rotational accuracy and comparison of theoretical values in the main bearing of scroll compressor. The main bearing is a type of oil journal bearing, but it has an axial or helical groove. The generalized coordinate system method, which can handle this groove, is applied to calculate the pressure profile in the journal bearing. The orbits of journal shaft are calculated corresponding to the compressed gas forces and bearing reaction forces. Then, the orbits are measured using three-point method. The results are compared to that from analyses.

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Balancer design for scroll compressors using vibration plane model (진동평면모델을 이용한 스크롤 압축기 균형추 설계)

  • Suh, Jeong-Hwan;Lee, Dong-Soo;Kim, Seung-Yup;Joh, Nam-Gyu;Lee, Hyung-Gook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.527-532
    • /
    • 2004
  • An effective balancing method for mil compressors is developed based on vibration plane model. By assuming the design range of balancer size is not large and considering only the radial axial direction rigid vibration of the mil compressors, we can find the vibration plane (V-plane) describing the vibration level of the scroll compressor depending upon balancer design specifications. By in the intersection of two minimum lines (areas) obtained from the couple of V-Planes we can find the design lesion to minimize vibration level of the compressor. The full design process is described by using an illustrative example with upper and lower balancer weights. Further more sensitivity analysis of parameters important for designation of size and positioning of the balancer is analyzed.

  • PDF

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Prediction of Axial Thrust Load under Turbocharger Operating Conditions (운전 상태에서의 터보차저 축 추력 예측)

  • Lee, Inbeom;Hong, Seongki;Kim, Youngchul;Choi, Boklok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF