• 제목/요약/키워드: axial buckling

검색결과 485건 처리시간 0.028초

Post-buckling behaviours of axially restrained steel columns in fire

  • Li, Guo-Qiang;Wang, Peijun;Hou, Hetao
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.89-101
    • /
    • 2009
  • This paper presents a simplified model to study post-buckling behaviours of the axially restrained steel column at elevated temperatures in fire. The contribution of axial deformation to the curvature of column section is included in theoretical equations. The possible unloading at the convex side of the column when buckling occurs is considered in the stress-strain relationship of steel at elevated temperatures. Parameters that affect structural behaviours of the axial restrained column in fire are studied. The axial restraint cause an increase in the axial force before the column buckles; the buckling temperature of restrained columns will be lower than non-restrained steel columns. However, the axial force of a restrained column decreases after the column buckles with the elevation of temperatures, so make use of the post-buckling behaviour can increase the critical temperature of restrained columns. Columns with temperature gradient across the section will produce lower axial force at elevated temperatures.

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

반복 축하중을 받아 국부좌굴을 수반하는 원형강관 부재의 복원력 특성 (The Behavior of Local Buckling for Steel Circular Tubes Subject to Cyclic Axial Loads)

  • 이상주;이동우;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

국부좌굴을 동반하는 원형강관 부재의 복원력 특성 (The Analysis of Local Buckling Behavior for Steel Circular Tubes)

  • 이상주;이동우;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.73-80
    • /
    • 2006
  • In this paper, we work with steel circular tubes and propose analysis model which can consider local buckling that it has an effect on failure of steel structures and induce the relation between loading and deformation. First of all, in respect to axial symmetry local buckling, which is simplest case, elasto-plastic behavior acting only axial loads is object. Therefore, it suggests analysis model for axial symmetry local buckling. And that is explainable the process from increasing internal force to decreasing passing maximum internal force. Besides, we induce the relation between the axial force and axial deformation.

  • PDF

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Buckling of axial compressed cylindrical shells with stepwise variable thickness

  • Fan, H.G.;Chen, Z.P.;Feng, W.Z.;Zhou, F.;Shen, X.L.;Cao, G.W.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.87-103
    • /
    • 2015
  • This paper focuses on an analytical research on the critical buckling load of cylindrical shells with stepwise variable wall thickness under axial compression. An arctan function is established to describe the thickness variation along the axial direction of this kind of cylindrical shells accurately. By using the methods of separation of variables, small parameter perturbation and Fourier series expansion, analytical formulas of the critical buckling load of cylindrical shells with arbitrary axisymmetric thickness variation under axial compression are derived. The analysis is based on the thin shell theory. Analytic results show that the critical buckling load of the uniform shell with constant thickness obtained from this paper is identical with the classical solution. Two important cases of thickness variation pattern are also investigated with these analytical formulas and the results coincide well with those obtained from other authors. The cylindrical shells with stepwise variable wall thickness, which are widely used in actual engineering, are studied by this method and the analytical formulas of critical buckling load under axial compression are obtained. Furthermore, an example is presented to illustrate the effects of each strake's length and thickness on the critical buckling load.

실시간 노심출력분포 합성에서의 축방향 경계조건 영향평가 (Evaluation of Axial Buckling Effect in On-Line Axial Power Shape Synthesis)

  • In, Wang-Kee;Kim, Joon-Sung;Yoon, Tae-Young;Auh, Geun-Sun;Kim, Hee-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.148-153
    • /
    • 1993
  • 노내계측기 신호로부터 노심평균 축방향 출력분포를 얻기위해 5차의 Fourier series 합성법이 노심감시계통 (COLSS)에 이용되고 있다. 이 방법은 단순하고 계산이 빠르기 때문에 실시간 계산에 이용된다. 이러한 합성법은 Fourier series 차수 및 축방향 경계조건에 따라 정확도가 달라진다. 노심감시계통에서는 현재 축방향으로 5개의 고정 노내계측기를 이용하고 있으므로 5차의 Fourier series 합성법을 적용하고 있다. 따라서 축방향 경계조건은 노심감시계통의 계산결과에 미치는 영향을 평가하여 적절히 결정되어야 한다. 본 논문에서는 영광 3,4호기를 대상으로 4가지의 축방향 경계조건 (axial buckling=0.75, 0.8, 0.9와 1.0)을 살펴보았다. 최적의 축방향 경계조건을 결정하기 위해 노심평균 축방향 출력분포와 운전여유도를 각 경우에 대해 비교하였다. 비교결과 최적의 축방향 경계조건은 axial buckling이 0.9인 것을 알 수 있었다.

  • PDF

Experimental investigation of inelastic buckling of built-up steel columns

  • Hawileh, Rami A.;Abed, Farid;Abu-Obeidah, Adi S.;Abdalla, Jamal A.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.295-308
    • /
    • 2012
  • This paper experimentally investigated the buckling capacity of built-up steel columns mainly, Cruciform Columns (CC) and Side-to-Side (SS) columns fabricated from two Universal Beam (UB) sections. A series of nine experimental tests comprised of three UB sections, three CC sections and three SS sections with different lengths were tested to failure to measure the ultimate axial capacity of each column section. The lengths used for each category of columns were 1.8, 2.0, and 2.2 m with slenderness ratios ranging from 39-105. The measured buckling loads of the tested specimens were compared with the predicted ultimate axial capacity using Eurocode 3, AISC LRFD, and BS 5959-1. It was observed that the failure modes of the specimens included flexural buckling, local buckling and flexural-torsional buckling. The results showed that the ultimate axial capacity of the tested cruciform and side-by-side columns were higher than the code predicted design values by up to 20%, with AISC LRFD design values being the least conservative and the Eurocode 3 design values being the most conservative. This study has concluded that cruciform column and side-to-side welded flange columns using universal beam sections are efficient built-up sections that have larger ultimate axial load capacity, larger stiffness with saving in the weight of steel used compared to its equivalent universal beam counterpart.

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

  • Shi, G.;Liu, Z.;Ban, H.Y.;Zhang, Y.;Shi, Y.J.;Wang, Y.Q.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.31-51
    • /
    • 2012
  • Local buckling can be ignored for hot-rolled ordinary strength steel equal angle compression members, because the width-to-thickness ratios of the leg don't exceed the limit value. With the development of steel structures, Q420 high strength steel angles with the nominal yield strength of 420 MPa have begun to be widely used in China. Because of the high strength, the limit value of the width-to-thickness ratio becomes smaller than that of ordinary steel strength, which causes that the width-to-thickness ratios of some hot-rolled steel angle sections exceed the limit value. Consequently, local buckling must be considered for 420 MPa steel equal angles under axial compression. The existing research on the local buckling of high strength steel members under axial compression is briefly summarized, and it shows that there is lack of study on the local buckling of high strength steel equal angles under axial compression. Aiming at the local buckling of high strength steel angles, this paper conducts an axial compression experiment of 420MPa high strength steel equal angles, including 15 stub columns. The test results are compared with the corresponding design methods in ANSI/AISC 360-05 and Eurocode 3. Then a finite element model is developed to analyze the local buckling behavior of high strength steel equal angles under axial compression, and validated by the test results. Following the validation, a finite element parametric study is conducted to study the influences of a range of parameters, and the analysis results are compared with the design strengths by ANSI/AISC 360-05 and Eurocode 3.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.