• Title/Summary/Keyword: avoiding moving obstacles

Search Result 35, Processing Time 0.019 seconds

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.

Path Planing for a Moving Robot using Ultra Sonic Sensors (초음파 센서를 이용한 이동로봇의 경로 계획)

  • Cha, Kyung-Hwan;Shin, Hyun-Shil;Hwang, Gi-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 2007
  • Robot collects surrounding information to recognize tile unknown environment by using various sensors such as visual, infrared ray and ultra sonic sensors. Although visual sensor is the most popular one, it has some difficulties in collecting data in dark or too bright environment due to sensitivity of the light. It also requests significant amount of calculation on collecting data from certain images with marked, straight and curved ones. As an alternative, ultra sonic sensor can simply overcome this visual sensing system's flaw and easily be used. It is easier than visual system, especially in case of collecting data on object and distance in dark environment. Ultra sonic sensor can replace the expensive visual sensing system not only in avoiding obstacles but also in reaching to the target area smoothly. The purpose of this paper is to develop the algorithm to optimize the environmental recognition, path planning and free-ranging by minimizing errors caused by inaccurate information and by considering characteristics of the ultra sonic rays such as refraction and diffusion. This paper also realizes the system that can recognize the environment and make the appropriate path planning by applying the algorithm on this moving robot.

  • PDF

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

Implementation of an Intelligent Automatic Parking Assist System (지능형 자동 주차 지원 시스템의 구현)

  • Park Cheong-Sool;Han Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.182-190
    • /
    • 2005
  • In the paper, we propose an intelligent automatic parking assist system. To realize an automatic parking, first, the prospective parking position and the location of a vehicle should be recognized. Second, the system should compute a path which introduces the parking position precisely with avoiding any obstacles. Third, the handle should be controlled so that the vehicle moves through the path. To calculate the location of the vehicle and its surroundings, the system applies the camera image method to transforming input images to the plane map. It also uses the inertial navigation method which recognizes the position and the direction of a moving vehicle by using a kinematic model of the vehicle. To generate a path of the vehicle, the simple path method and the Bezier spline method are tested. The divided arc method which generates multiple paths is also tested. We apply a method which makes the system choose the best path with multiple objective functions. We introduce the virtual road method, as a solution for the problem of mechanical time delay, to have the vehicle followed the designated path.

  • PDF

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.