• Title/Summary/Keyword: avoidance of collision

Search Result 833, Processing Time 0.035 seconds

Asynchronous Behavior Control Algorithm of the Swarm Robot for Surrounding Intruders (군집 로봇의 침입자 포위를 위한 비동기 행동 제어 알고리즘)

  • Kim, Jong-Seon;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.812-818
    • /
    • 2012
  • In this paper, we propose an asynchronous behavior control algorithm of the swarm robot for surrounding intruders when detected an intruder in a surveillance environment. The proposed method is divided into three parts: First, we proposed the method for the modeling of a state of the swarm robot. Second, we proposed an asynchronous behavior control algorithm for the surrounding an intruder by the swarm robot. Third, we proposed a control method for the collision avoidance with the swarm robot. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Limit-cycle Navigation Method for Fast Mobile Robots (이동로붓을 위한 Limit-cycle 항법)

  • Rew, Keun-Ho;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1130-1138
    • /
    • 2008
  • A mobile robot should be designed to navigate with collision avoidance capability in the real world, coping with the changing environment flexibly. In this paper, a novel navigation method is proposed for fast moving mobile robots using limit-cycle characteristics of the 2nd-order nonlinear function. It can be applied to robots in dynamically changing environment such as the robot soccer. By adjusting the radius of the motion circle and the direction of the obstacle avoidance, the mobile robot can avoid the collision with obstacles and move to the destination point. To demonstrate the effectiveness and applicability, it is applied to the robot soccer. Simulations and real experiments ascertain the merits of the proposed method.

Research on the collision avoidance of manipulators based on the global subgoals and a heuristic graph search

  • Inoue, Y.;Yoshimura, T.;Kitamura, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.609-614
    • /
    • 1989
  • A collision avoidance algorithm based on a heuristic graph search and subgoals is presented. The joint angle space is quantized into cells. The evaluation function for a heuristic search is defined by the sum of the distance between the links of a manipulator and middle planes among the obstables and the distance between the end-effector and the subgoals on desired trajectory. These subgoals reduce the combinatorial explosion in the search space. This method enables us to avoid a dead-lock in searching. Its effectiveness has been verified by simulation studies.

  • PDF

A New Approach to Real-Time Obstacle Avoidance of a Mobile Robot (이동 로봇의 실시간 장애물 회피를 위한 새로운 방법)

  • 고낙용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.28-34
    • /
    • 1998
  • This paper presents a new method for local obstacle avoidance of indoor mobile robots. The method combines a directional approach called the lane method and a velocity space approach. The lane method divides working area into lanes and then chooses the best lane to follow for efficient and collision-free movement. Then, the heading direction to enter and follow the best lane is decided, and translational and rotational velocity considering physical limitations of a mobile robot are determined. Since this method combines both the directional and velocity space method, it shows collision-free motion as well as smooth motion taking the dynamic of the robot into account.

A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators (로보트의 시변 장애물 회피를 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.

A Study on Dynamic Timeout Over Multiple Access with Collision Avoidance (충돌회피 다중접속을 위한 동적 타임아웃 연구)

  • Khoa, Tran Thi Minh;Oh, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.97-100
    • /
    • 2011
  • Underwater Wireless Acoustic Sensor Networks have become an important area of research over the recent decades. Designing an underwater network, especially a media access control (MAC) protocol, faces many challenges due to the peculiarities of underwater environment. One of the most important problems is resulted from long and variable propagation delay of the acoustic wave. In this paper, we propose a new method, namely Dynamic Timeout over Multiple Access with Collision Avoidance (DT/MACA), which is designed to handle long and high variable propagation delay in underwater acoustic sensor networks. In this proposed method, the difference timeout intervals are evaluated and applied to each network transmission. Simulation results show that our work not only improves the network throughput, but also decreases the unnecessary retransmission and end-to-end delay.

Cooperating Control of Multiple Nonholonomic Mobile Robots Carrying a Ladder with Obstacles

  • Yang, Dong-Hoon;Choi, Yong-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.818-829
    • /
    • 2003
  • A cooperating control algorithm for two nonholonomic mobile robots is proposed. The task is composed of collision avoidance against obstacles and carrying a ladder. The front robot and the rear robot are called the leader and the follower, respectively. Each robot has a nonholonomic constraint so it cannot move in perpendicular directions. The environment is initially supposed to be unknown except target position. The torque that drives leader is determined by distance between the leader and the target position or the distance between it and the obstacles. The torque by target is attractive and the torque by obstacles is repulsive. The two mobile robots are supposed to be connected by link that can be expanded and contracted. The follower computes its torque using position and orientation information from the leader by communication. Simulation results show that the robots can drive to target position without colliding into the obstacles and maintain the distance in the allowable range.

  • PDF

Mobile Robot navigation using an Multi-resolution Electrostatic Potential Filed

  • Kim, Cheol-Taek;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.690-693
    • /
    • 2004
  • This paper proposes a multi-resolution electrostatic potential field (MREPF) based solution to the mobile robot path planning and collision avoidance problem in 2D dynamic environment. The MREPF is an environment method in calculation time and updating field map. The large scale resolution map is added to EPF and this resolution map interacts with the small scale resolution map to find an optimal solution in real time. This approach can be interpreted with Atlantis model. The simulation studies show the efficiency of the proposed algorithm.

  • PDF