• Title/Summary/Keyword: avoidance algorithm

Search Result 675, Processing Time 0.031 seconds

Development of Collision Warning/Avoidance Algorithms using Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 충돌 경보/회피 알고리듬 개발)

  • Kim, Jae-Ho;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.647-652
    • /
    • 2000
  • This paper proposes a collision warning/avoidance algorithm using a trajectory prediction method. This algorithm is based on 2-dimensional kinematics and the Kalman filter has been used to obtain the information of the object vehicle. This algorithm has been investigated via computer simulation and showed a good trajectory prediction performance. The proposed collision warning/avoidance algorithm would enhanced driver acceptance for a collision warning/avoidance system.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

Obstacle Avoidance Algorithm for Vehicle using Fuzzy Inferences

  • Kawaji, Shigeyasu;Matsunaga, Nobutomo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1246-1249
    • /
    • 1993
  • In this paper, we propose an algorithm of obstacle avoidance using fuzzy inferences. After the basic idea of the path generation algorithm using piecewise polynomials is described, the obstacle avoidance problem using fuzzy inferences is considered. Main concept of the avoidance algorithm is to modify intermittent point data using fuzzy inferences and to generate the collision free path based on the modified data. Finally, simulation result demonstrate the effectiveness of the proposed algorithm.

  • PDF

Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs (국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘)

  • Cho, Yonghoon;Han, Jungwook;Kim, Jinwhan;Lee, Philyeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

A Collision Avoidance Algorithm of a Mobile Robot in the Presence of Moving Obstacle (움직이는 장애물이 있을때 이동 로봇의 충돌 회피 알고리즘)

  • Kim, S.W.;Gweon, D.G.;Cha, Y.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.158-167
    • /
    • 1997
  • For the use of a mobile robot in dynamic environment, a collision-avoidance algorithm with moving obsta- cle is necessary. In this paper, a collsion-avoidance algorithm of a mobile robot is presented, when a mobile robot detects the collision with moving obstacle on the navigational path. Using reported positions of moving obstacle with sensors, the mobile robot predicts the next position of moving obstacle with possibility of collision. The velocity of moving obstacle is modeled as random walk process with Gaussian distribution. The optimal collision-avoidance path in which turning motion of the mobile robot is considered is generated with relative velocity between the mobile robot and moving obstacle. For the safety of collision-avoidance path, attractive potential with the safety factor is suggested. The simulation results using this algorithm show the mobile robot avoids collision with moving obstacle in many cases.

  • PDF

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

The Development of Obstacle Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Sensor

  • Yu, Whan-Sin;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.408-412
    • /
    • 2003
  • Obstacle avoidance algorithm is very important on an unmanned vehicle. Therefore, in this research, we propose a algorithm of obstacle avoidance and we can prove through vehicle test and sensor experiments. Obstacle avoidance must be divided into two parts: the first part includes the longitudinal control for acceleration and deceleration and the second part is the lateral control for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are confirmed through vehicle tests.

  • PDF

Analysis of a Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 충돌 방지를 위한 분산 확률 탐색 알고리즘의 분석)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • It is very important to understand the intention of a target ship to prevent collisions in multiple-ship situations. However, considering the intentions of a large number of ships at the same time is a great burden for the officer who must establish a collision avoidance plan. With a distributed algorithm, a ship can exchange information with a large number of target ships and search for a safe course. In this paper, I have applied a Distributed Stochastic Search Algorithm (DSSA), a distributed algorithm, for ship collision avoidance. A ship chooses the course that offers the greatest cost reduction or keeps its current course according to probability and constraints. DSSA is divided into five types according to the probability and constraints mentioned. In this paper, the five types of DSSA are applied for ship collision avoidance, and the effects on ship collision avoidance are analyzed. In addition, I have investigated which DSSA type is most suitable for collision avoidance. The experimental results show that the DSSA-A and B schemes offered effective ship collision avoidance. This algorithm is expected to be applicable for ship collision avoidance in a distributed system.