• Title/Summary/Keyword: averaged model

Search Result 1,231, Processing Time 0.028 seconds

Shape Optimization of A Surface Roughened by Staggered Ribs To Enhance Turbulent Heat Transfer

  • Kim Hong-Min;Kim Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.237-239
    • /
    • 2003
  • The present study investigates on design optimization of rib-roughened two-dimensional channel to enhance turbulent heat transfer. Response surface method with Reynolds-averaged Navier-Stokes analysis is used as an optimization technique. Standard $k-{\varepsilon}$model with wall functions is adopted as a turbulence closure. The objective function is defined as a linear combination of heat transfer and friction drag coefficients with weighting factor. Computational results for overall heat transfer rate show good agreements with experimental data. Four design variables are optimized for weighting factor of 0.02.

  • PDF

HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES (기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석)

  • Kim, H.M.;Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

EFFECTS OF FLUIDIC OSCILLATOR GEOMETRY ON PERFORMANCE (유체진동기의 형상 변화가 성능에 미치는 영향)

  • Jeong, Han-Sol;Kim, Kwang-Yong
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.77-88
    • /
    • 2016
  • A parametric study on a fluidic oscillator was performed numerically in this work. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations were solved to analyze the flow in the fluidic oscillator. As turbulence closure, $k-{\varepsilon}$ model was employed. Validation of the numerical results was performed by comparing numerical results with experimental data for frequency of the oscillation. The parametric study was performed using five geometric parameters. Performance of the fluidic oscillator was evaluated in terms of velocity ratio and pressure drop. The results show that the inlet channel width and the distance between splitters are important factors in determining the performance of the fludic oscillator.

Autoregressive Cholesky Factor Modeling for Marginalized Random Effects Models

  • Lee, Keunbaik;Sung, Sunah
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.169-181
    • /
    • 2014
  • Marginalized random effects models (MREM) are commonly used to analyze longitudinal categorical data when the population-averaged effects is of interest. In these models, random effects are used to explain both subject and time variations. The estimation of the random effects covariance matrix is not simple in MREM because of the high dimension and the positive definiteness. A relatively simple structure for the correlation is assumed such as a homogeneous AR(1) structure; however, it is too strong of an assumption. In consequence, the estimates of the fixed effects can be biased. To avoid this problem, we introduce one approach to explain a heterogenous random effects covariance matrix using a modified Cholesky decomposition. The approach results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The interpretation of the parameters is sensible. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using this method.

CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment (CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션)

  • Son, Yoon-Suk;Kim, Hyeong-Gweon;Oh, Hyung-Sik;Kim, Tae-Ok;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF

Effects of Geometry of a Boot-Shaped Rib on Heat Transfer and Pressure Drop (신발형 리브의 형상변화가 열전달 및 압력 강하에 미치는 영향)

  • Seo, Jae-Won;Kim, Jun-Hee;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.66-73
    • /
    • 2015
  • This paper deals with a parametric study on boot-shaped ribs in a rectangular cooling channel. Numerical analysis of the flow and heat transfer was performed using three-dimensional Reynolds averaged Navier-Stokes equations with the Speziale, Sarkar and Gatski turbulence model. The parametric study was performed for the parameters, tip width-to rib width, tip height-to-rib height, rib height-to-channel height, and rib height-to-width ratios. To assess the cooling performance and friction loss, Numsselt number and friction factor were defined as the performance parameter, respectively. The results showed that the cooling performance and friction loss were seriously affected by the four geometric parameters.

Shape Optimization of Cylindrical Film-Cooling Hole Using Kriging Method (크리깅 기법을 이용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2729-2732
    • /
    • 2008
  • Cylindrical film-cooling hole is formulated numerically and optimized to enhance film-cooling effectiveness. The Kriging method is used an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid and heat transfer with shear stress transport model. The hole length-to-diameter ratio and injection angle are chosen as design variables and spatially averaged film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points obtained by Latin Hypercube Sampling for two design variables. Optimum shape shows the film-cooling effectiveness increased.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Numerical Simulation of Cascade Flows with Rotor-Stator Interaction Using the Multiblocked Grid (중첩 격자계를 이용한 동익과 정익의 상호작용이 있는 익렬 유동해석)

  • Jung, Y. R.;Park, W. G.;Lee, S. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.163-169
    • /
    • 1999
  • The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.

  • PDF

Analysis of Contra-Rotating Propellers in Setady Flow by a Vortex Lattice Method (와류격자법에 의한 정상유동중의 상반회신 프로펠러 성능해석)

  • 서성부
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.36-43
    • /
    • 2000
  • In this paper a Vortex Lattice Method is used to predict the performances of a contra-Rotating Propeller. Greeley and Kerwin's(1982) wake model is adopted instead of the exact trailing vortex geometry. The interaction of the two propellers is treated by the sense that the induction of one propeller upon the other propeller is averaged in the circumferential direction . Two single propellers (DTRC 4119 & DTRC 4842) are chosen and compared with the experimental and other numerical results published. Then the computational results for three CRP's (4-0-4 CRP(DTRC 3686+DTRC 3687A) 4-0-5 CRP(DTRC 3686+DTRC 3849) & DTRC CRT(DTRC 5067+DTRC 5068) are compared with the experimental and numerical results published. The interaction of both propellers by the change of inflow velocity and circulation of each propeller is investigated.

  • PDF